精英家教网 > 初中数学 > 题目详情
如图,抛物线y=
12
x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.
分析:(1)将A(-1,0)代入y=
1
2
x2+bx-2,即可解出b的值,从而得到函数的解析式,配方后即可求出D点坐标;
(2)根据平移规律,将函数的顶点式进行变化,得到线先向下平移3个单位,再向右平移2个单位的函数解析式,再展成一般式即可.
解答:解:(1)将A(-1,0)代入抛物线y=
1
2
x2+bx-2得,
1
2
×(-1)2-b-2=0,
解得,b=-
3
2

则函数解析式为y=
1
2
x2-
3
2
x-2.
配方得,y=
1
2
(x-
3
2
2-
25
8

可见,顶点坐标为(
3
2
,-
25
8
).

(2)将上述抛物线先向下平移3个单位,再向右平移2个单位,可得,
y=
1
2
(x-
3
2
-2)2-
25
8
-3
=
1
2
(x-
7
2
2-
49
8

=
1
2
x2-
7
2
x.
点评:本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数图象与几何变换,难度不大,但要细心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,如果OB=OC=
1
2
OA,那么b的值为(  )
A、-2
B、-1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=x2+bx+c(b、c为常数)经过原点和E(3,0).
(1)求该抛物线所对应的函数关系式;
(2)设A是该抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值及此时点A的坐标;如果不存在,请说明理由;
③当B(
12
,0)时,x轴上是否存在两点P、Q(点P在点Q的左边),使得四边形PQDA是菱形?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=
12
(x+1)2-2
与x轴交于A、B两点,P为该抛物线上一点,且满足△PAB的面积等于4,这样的点P有
3
3
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+
5
2
与直线ABy=
1
2
x+
1
2
交于x轴上的一点A,和另一点B(4,n).点P是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线PQ与直线AB垂直,交直线AB于点Q,.
(1)求抛物线的解析式和cos∠BAO的值;
(2)设点P的横坐标为m用含m的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.

查看答案和解析>>

同步练习册答案