精英家教网 > 初中数学 > 题目详情

△ABC中,∠BAC=90°,AD⊥BC于点D,若AD=,BC=,则△ABC的周长为      

解析试题分析:根据相似三角形的性质及射影定理可得,即可求得结果.

由题意得
解得

同理可得
则△ABC的周长为
考点:相似三角形的性质
点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在△ABC中,∠BAC=60°,BD、CE分别是边AC,AB上的高,BD、CE相交于点O,则∠BOC的度数是
120°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=
3
,PB=5,PC=2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,则AD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

93、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,那么△AEF是等腰三角形吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据
SAS
SAS
,易证△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系
∠B+∠D=180°
∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

同步练习册答案