精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=3,AC=
15
,求AB的长.
分析:(1)连接OC;根据切线的性质知:OC⊥CD;因此只需证OC∥AD即可.已知AC平分∠BAD,即∠DAC=∠BAC,等腰△OAC中,∠OAC=∠OCA,等量代换后可得出OC、AD的内错角相等,由此得证.
(2)连接BC,证△ADC∽△ACB,根据相似三角形得出的对应边成比例线段,可将AB的长求出.
解答:精英家教网(1)证明:连接OC,
∵直线CD与⊙O相切于点C,
∴OC⊥CD.
∵OA=OC,
∴∠OAC=∠OCA.
∵AC平分∠DAB,
∴∠DAC=∠OAC.
∴∠DAC=∠OCA.
∴OC∥AD.
∴AD⊥CD.

(2)解:连接BC,则∠ACB=90°.
∵∠DAC=∠OAC.
∴△ADC∽△ACB.
AD
AC
=
AC
AB

∴AB=
AC2
AD
=
(
15
)
2
3
=5.
点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案