分析 (1)由△ABD和△ACE是等边三角形,根据等边三角形的性质得到AB=AD,AC=AE,∠DAB=∠EAC=60°,然后给∠DAB和∠EAC都加上∠BAC,得到∠DAC=∠BAE,利用“SAS“即可得到△DAC≌△BAE,最后根据全等三角形的对应边相等即可得证;
(2)作DG∥AE,交AB于点G,由等边三角形的∠EAC=60°,加上已知的∠CAB=30°得到∠FAE=90°,然后根据两直线平行内错角相等得到∠DGF=90°,再根据∠ACB=90°,∠CAB=30°,利用三角形的内角和定理得到∠ABC=60°,由等边三角形的性质也得到∠DBG=60°,从而得到两角的相等,再由DB=AB,利用“AAS”证得△DGB≌△ACB,根据全等三角形的对应边相等得到DG=AC,再由△AEC为等边三角形得到AE=AC,等量代换可得DG=AE,加上一对对顶角的相等和一对直角的相等根据“AAS”证得△DGF≌△EAF,最后根据全等三角形的对应边相等即可得证.
解答 (1)∵△ABD和△ACE是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,
在△DAC和△BAE中,$\left\{\begin{array}{l}{AC=AE}\\{∠DAC=∠BAE}\\{AD=AB}\end{array}\right.$,
∴△DAC≌△BAE(SAS),
∴DC=BE;
(2)①EF=DF.
②如图,作DG∥AE,交AB于点G,
由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,
∴∠DGF=∠FAE=90°,
又∵∠ACB=90°,∠CAB=30°,
∴∠ABC=60°,
又∵△ABD为等边三角形,∠DBG=60°,DB=AB,
∴∠DBG=∠ABC=60°,
在△DGB和△ACB中,$\left\{\begin{array}{l}{∠DGB=∠ACB}\\{∠DBG=∠ABC}\\{DB=AB}\end{array}\right.$,
∴△DGB≌△ACB(AAS),
∴DG=AC,
又∵△AEC为等边三角形,∴AE=AC,
∴DG=AE,
在△DGF和△EAF中,$\left\{\begin{array}{l}{∠DGF=∠EAF}\\{∠DFG=∠EFA}\\{DG=EA}\end{array}\right.$,
∴△DGF≌△EAF(AAS),
∴DF=EF.
故答案为:=.
点评 此题考查了全等三角形的判定与性质,平行线的性质,以及等边三角形的性质,其中全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角相等等隐含条件的运用.第二问作出辅助线构造全等三角形是本问的突破点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com