精英家教网 > 初中数学 > 题目详情

已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.
(1)请问BD和CE是否平行?请你说明理由.
(2)AC和BD的位置关系怎样?请说明判断的理由.

解:(1)BD∥CE.
理由:∵AB∥CD,
∴∠ABC=∠DCF,
∴BD平分∠ABC,CE平分∠DCF,
∴∠2=∠ABC,∠4=∠DCF,
∴∠2=∠4,
∴BD∥CE(同位角相等,两直线平行);

(2)AC⊥BD,
理由:∵BD∥CE,
∴∠DGC+∠ACE=180°,
∴∠ACE=90°,
∴∠DGC=180°-90°=90°,
即AC⊥BD.
分析:(1)根据平行线性质得出∠ABC=∠DCF,根据角平分线定义求出∠2=∠4,根据平行线的判定推出即可;
(2)根据平行线性质得出∠DGC+∠ACE=180°,根据∠ACE=90°,求出∠DGC=90°,根据垂直定义推出即可.
点评:本题考查了角平分线定义,平行线的性质和判定,垂直定义等知识点,注意:①同位角相等,两直线平行,②两直线平行,同旁内角互补.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案