20£®Ì½Ë÷£º
£¨1£©Èç¹û$\frac{3x+4}{x+1}$=3+$\frac{m}{x+1}$£¬Ôòm=1£»
£¨2£©Èç¹û$\frac{5x-3}{x+2}$=5+$\frac{m}{x+2}$£¬Ôòm=-13£»
×ܽ᣺Èç¹û$\frac{ax+b}{x+c}$=a+$\frac{m}{x+c}$£¨ÆäÖÐa¡¢b¡¢cΪ³£Êý£©£¬Ôòmb-ac£»
Ó¦ÓãºÀûÓÃÉÏÊö½áÂÛ½â¾ö£ºÈô´úÊýʽ$\frac{4x-3}{x-1}$µÄֵΪÕûÊý£¬ÇóÂú×ãÌõ¼þµÄÕûÊýxµÄÖµ£®

·ÖÎö £¨1£©ÒÑÖªµÈʽÓÒ±ßͨ·Ö²¢ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó·¨·¨Ôò¼ÆË㣬ÔÙÀûÓ÷ÖʽÏàµÈµÄÌõ¼þÈ·¶¨³ömµÄÖµ¼´¿É£»
£¨2£©ÒÑÖªµÈʽÓÒ±ßͨ·Ö²¢ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó·¨·¨Ôò¼ÆË㣬ÔÙÀûÓ÷ÖʽÏàµÈµÄÌõ¼þÈ·¶¨³ömµÄÖµ¼´¿É£»¹éÄÉ×ܽá±íʾ³öm¼´¿É£»¸ù¾ÝµÃµ½µÄ½áÂÛÈ·¶¨³öÕûÊýxµÄÖµ¼´¿É£®

½â´ð ½â£ºÌ½Ë÷£º£¨1£©ÒÑÖªµÈʽÕûÀíµÃ£º$\frac{3x+4}{x+1}$=$\frac{3x+3+m}{x+1}$£¬¼´3x+4=3x+3+m£¬
½âµÃ£ºm=1£»
¹Ê´ð°¸Îª£º1£»-13
£¨2£©ÒÑÖªµÈʽÕûÀíµÃ£º$\frac{5x-3}{x+2}$=$\frac{5x+10+m}{x+2}$£¬¼´5x-3=5x+10+m£¬
½âµÃ£ºm=-13£»
×ܽ᣺m=b-ac£»       
¹Ê´ð°¸Îª£ºm=b-ac£»       
Ó¦Óãº$\frac{4x-3}{x-1}$=$\frac{4£¨x-1£©+1}{x-1}$=4+$\frac{1}{x-1}$£¬
¡ßxΪÕûÊýÇÒ$\frac{4x-3}{x-1}$ΪÕûÊý£¬
¡àx-1=¡À1£¬
¡àx=2»ò0£®

µãÆÀ ´ËÌ⿼²éÁË·ÖʽµÄÖµ£¬ÅªÇåÌâÖеĹæÂÉÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÊýѧÎÊÌ⣺¼ÆËã$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+¡­+\frac{1}{{m}^{n}}$*£¨ÆäÖÐm£¬n¶¼ÊÇÕýÕûÊý£¬ÇÒm¡Ý2£¬n¡Ý1£©
̽¾¿ÎÊÌ⣺Ϊ½â¾öÉÏÃæµÄÊý×ÖÎÊÌ⣬ÎÒÃÇÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨£¬Í¨¹ý²»¶ÏµØ·Ö¸îÒ»¸öÃæ»ýΪ1µÄÕý·½ÐΣ¬°ÑÊýÁ¿¹ØϵºÍ¼¸ºÎͼÐÎÇÉÃîµØ½áºÏÆðÀ´£¬²¢²ÉÈ¡Ò»°ãÎÊÌâÌØÊ⻯µÄ²ßÂÔÀ´½øÐÐ̽¾¿£®
̽¾¿Ò»£º¼ÆËã$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$
µÚ1´Î·Ö¸î£¬°ÑÕý·½ÐεÄÃæ»ý¶þµÈ·Ö£¬ÆäÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{1}{2}$£»
µÚ2´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐø¶þµÈ·Ö£¬ÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{1}{2}+\frac{1}{{2}^{2}}$£»
µÚ3´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐø¶þµÈ·Ö£¬¡­£»
¡­
µÚn´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý×îºó¶þµÈ·Ö£¬ËùÓÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$£¬×îºó¿Õ°×²¿·ÖµÄÃæ»ýÊÇ$\frac{1}{{2}^{n}}$£®
¸ù¾ÝµÚn´Î·Ö¸îͼ¿ÉµÃµÈʽ£º$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$£®

̽¾¿¶þ£º¼ÆËã$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+¡­+\frac{1}{{3}^{n}}$£®
µÚ1´Î·Ö¸î£¬°ÑÕý·½ÐεÄÃæ»ýÈýµÈ·Ö£¬ÆäÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{2}{3}$£»
µÚ2´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐøÈýµÈ·Ö£¬ÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{2}{3}+\frac{2}{{3}^{2}}$£»
µÚ3´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý¼ÌÐøÈýµÈ·Ö£¬¡­£»
¡­
µÚn´Î·Ö¸î£¬°ÑÉϴηָîͼÖпհײ¿·ÖµÄÃæ»ý×îºóÈýµÈ·Ö£¬ËùÓÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+¡­+\frac{2}{{3}^{n}}$£¬×îºó¿Õ°×²¿·ÖµÄÃæ»ýÊÇ$\frac{1}{{3}^{n}}$£®
¸ù¾ÝµÚn´Î·Ö¸îͼ¿ÉµÃµÈʽ£º$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+¡­+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$£®
Á½±ßͬ³ýÒÔ2£¬µÃ$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+¡­+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2¡Á{3}^{n}}$\

̽¾¿Èý£º¼ÆËã$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$£®
£¨·ÂÕÕÉÏÊö·½·¨£¬Ö»»­³öµÚn´Î·Ö¸îͼ£¬ÔÚͼÉϱê×¢ÒõÓ°²¿·ÖÃæ»ý£¬²¢Ð´³ö̽¾¿¹ý³Ì£©

½â¾öÎÊÌ⣺¸ù¾ÝÇ°Ãæ̽¾¿½á¹û£º
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+¡­+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2¡Á{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3¡Á{4}^{n}}$£®
¡­
ÍƳö£º$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+¡­+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{£¨m-1£©{m}^{n}}$£®£¨Ö»Ìî¿Õ£¬ÆäÖÐm¡¢n¶¼ÊÇÕýÕûÊý£¬ÇÒm¡Ý2£¬n¡Ý1£©
ÍعãÓ¦Ó㺼ÆËã$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+¡­+\frac{{5}^{n}-1}{{5}^{n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¼ÆËã$\frac{£¨{3}^{4}+4£©£¨{7}^{4}+4£©£¨1{1}^{4}+4£©}{£¨{1}^{4}+4£©£¨{5}^{4}+4£©£¨{9}^{4}+4£©}$=145£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®£¨1£©¼ÆË㣺$\sqrt{18}$-£¨$\sqrt{2}$+1£©-1+£¨$\sqrt{3}$-$\sqrt{2}$£©0
£¨2£©ÓÃÊʵ±µÄ·½·¨½âÏÂÁз½³Ì£º
¢Ùx2-12x-4=0£»
¢Ú£¨x-1£©2+2x£¨x-1£©=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªµÈÑüÈý½ÇÐεÄÁ½±ßµÄ³¤ÊÇ·½³Ì£¨x-2£©2-1=0µÄÁ½¸ù£¬ÇóÕâ¸öµÈÑüÈý½ÇÐεÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2+£¨m-5£©x+m-2=0ÓÐʵ¸ù£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£¬Ê¹·½³ÌµÄÁ½¸ù·Ö±ðÓÐÒÔÏÂÇé¿ö£º
£¨1£©Á½¸ù¶¼Ð¡ÓÚ-2£»
£¨2£©Ò»¸ù´óÓÚ2£¬ÁíÒ»¸ùСÓÚ2£»
£¨3£©Ò»¸ùÔÚÇø¼ä£¨-2£¬0£©ÄÚ£¬ÁíÒ»¸ùÔÚÇø¼ä£¨2£¬4£©ÄÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=3cm£¬BC=4cm£®
£¨1£©ÇóÕâ¸öÈý½ÇÐεÄб±ßABµÄ³¤ºÍб±ßÉϵĸßCDµÄ³¤£»
£¨2£©Çóб±ß±»·Ö³ÉµÄÁ½²¿·ÖADºÍBDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÓÃÖ±³ß×÷ͼ£¨²»Ð´»­·¨£©£¬ÒÑÖªÈçͼ£¬ABÊÇÏ߶Σ¬C£¬DÊÇÁ½µã£®
£¨1£©¹ýA¡¢CÁ½µã×÷Ö±ÏßAC£¬¹ýB¡¢DÁ½µã×÷Ö±ÏßBD£¬Ö±ÏßACÓëBD½»ÓÚµãE£®
£¨2£©Á¬½ÓBCºÍAD£¬BCºÍAD½»ÓÚµãF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼÊÇijѧУÖ÷Â¥ÌÝ´Óµ×Â¥µ½¶þÂ¥µÄÂ¥ÌݽØÃæͼ£¬ÒÑÖªBC=7Ã×£¬AB=6+3$\sqrt{3}$Ã×£¬Öмäƽ̨DEÓëµØÃæABƽÐУ¬ÇÒDEµÄ³¤¶ÈΪ2Ã×£¬DM¡¢ENΪƽ̨µÄÁ½¸ùÖ§Öù£¬DM¡¢EN´¹Ö±ÓÚAB£¬´¹×ã·Ö±ðΪM¡¢N£¬¡ÏEAB=30¡ã£¬¡ÏCDF=45¡ã£¬Â¥ÌÝ¿í¶ÈΪ3Ã×£®
£¨1£©ÈôÒªÔÚÂ¥ÌÝÉÏ£¨°üÀ¨Æ½Ì¨DE£©ÆÌÂúµØ̺£¬ÇóµØ̺µÄ³¤¶È£»
£¨2£©ÑØÂ¥ÌÝ´ÓAµãµ½EµãÆÌÉè¼Û¸ñΪÿƽ·½Ã×100ÔªµÄµØ̺£¬´ÓEµãµ½CµãÆÌÉè¼Û¸ñΪÿƽ·½Ã×120ÔªµÄµØ̺£¬ÇóÓõØ̺ÆÌÂúÕû¸öÂ¥Ìݹ²ÐèÒª»¨·Ñ¶àÉÙԪǮ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸