分析 (1)作AH⊥CD于H,如图,根据垂径定理得CH=DH=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,再利用勾股定理计算出AH=4,然后根据梯形的面积公式求解;
(2)作CP⊥AB于P,如图1,根据垂径定理得CH=DH=$\frac{1}{2}$x,易得AP=CH=$\frac{1}{2}$x,则BP=AB-AP=8-$\frac{1}{2}$x,在Rt△PAC中利用勾股定理得到CP2=25-$\frac{1}{4}$x2,在Rt△BPC中根据勾股定理得到y2=(8-$\frac{1}{2}$x)2+25-$\frac{1}{4}$x2=89-8x,然后利用算术平方根定义即可得到y与x的关系.
解答 解:过点A作AH⊥CD于H,如图,则CH=DH=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,
在Rt△AHD中,∵AD=5,DH=3,
∴AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=4,
∴四边形ABCD的面积=$\frac{1}{2}$(CD+AB)•AH=$\frac{1}{2}$×(6+8)×4=28;
(2)作点C作CP⊥AB于P,如图,
∵AH⊥CD,CD=x,
∴CH=DH=$\frac{1}{2}$x,
∴AP=CH=$\frac{1}{2}$x,
∴BP=AB-AP=8-$\frac{1}{2}$x,
在Rt△PAC中,∵AC2=AP2+CP2,
∴CP2=25-$\frac{1}{4}$x2,
在Rt△BPC中,∵BC2=BP2+CP2,
∴y2=(8-$\frac{1}{2}$x)2+25-$\frac{1}{4}$x2=89-8x,
∴y=$\sqrt{89-8x}$(0<x<10);
点评 本题考查了矩形的判定与性质、勾股定理和圆周角定理,关键是根据题意作出辅助线,运用勾股定理进行几何计算.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com