精英家教网 > 初中数学 > 题目详情
(2013•德惠市二模)如图,在平面直角坐标系中,三个小正方形的边长均为1,且正方形的边与坐标轴平行,边DE落在x轴的正半轴上,边AG落在y轴的正半轴上,A、B两点在抛物线y=-
1
2
x2+bx+c上.
(1)直接写出点B的坐标;
(2)求抛物线y=-
1
2
x2+bx+c的解析式;
(3)将正方形CDEF沿x轴向右平移,使点F落在抛物线y=-
1
2
x2+bx+c上,求平移的距离.
分析:(1)由图中的三个小正方形的边长为1,根据图形可以知道B点的横坐标为1,做那个坐标为3,从而得出点B的坐标.
(2)根据图象求出点A的坐标,再把A、B的坐标代入解析式,根据待定系数法就可以求出b、c的值,从而求出抛物线的解析式.
(3)实际上就是当y=1时代入解析式就可以求出平移后点F′的横坐标,就可以求出E′点的坐标,此时OE′-3就是平移的距离.
解答:解:(1)由图象,得B(1,3).

(2)由题意,得A(0,2)
3=-
1
2
+b+c
2=c
,解得:
b=
3
2
c=2

y=-
1
2
x2+
3
2
x+2

∴抛物线的解析式为:y=-
1
2
x2+
3
2
x+2


(3)当y=1时,
1=-
1
2
x2+
3
2
x+2
解得:
x=
3+
17
2
3-
17
2
(不符合题意应舍去),
∴F′(
3+
17
2
,1),
∴E′(
3+
17
2
,0),
∴OE′=
3+
17
2

∴平移的距离为:
17
-3
2
点评:本题是一道二次函数综合试题,考查了求点的坐标,用待定系数法求函数的解析式,平移的运用等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•德惠市二模)如图1,在△ABC中,∠ACB=90°,DE⊥AC,DF⊥BC,AD=3,DB=4,将图1中△ADE绕点D顺时针旋转90°可以得到图2,则图1中△ADE和△BDF面积之和为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德惠市二模)某次募捐活动共募集善款13.56万元,将13.56万元用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德惠市二模)如图摆放的正三棱柱的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德惠市二模)某校七年级学生参加课外活动人数的扇形统计图如图所示.若参加舞蹈类的学生有40人,则参加球类活动的学生人数有(  )

查看答案和解析>>

同步练习册答案