精英家教网 > 初中数学 > 题目详情
(2012•邯郸二模)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-4,0),与反比例函数在第一象限内的图象的交于点B,在第一象限内,当一次函数值大于反比例函数值时,则x>4,连接BO,若S△AOB=8.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.
分析:(1)根据在第一象限内,当一次函数值大于反比例函数值时,则x>4得出点B横坐标为4,设点B的坐标为(4,n),根据S△AOB=8,OA=4,求出点B的坐标,设该反比例函数的解析式为y=
k
x
(k≠0)则k=16,根据直线AB经过点A和点B,运用待定系数法即可求出直线AB的解析式;
(2)根据直线AB的解析式求出点C的坐标,再根据点B的横坐标即可求出△OCB的面积.
解答:(1)解:∵直线AB与反比例函数在第一象限内的图象的交于点B,在第一象限内,当一次函数值大于反比例函数值时,则x>4,
∴点B横坐标为4,
设点B的坐标为(4,n),
∵S△AOB=8,OA=4,
1
2
×4n=8,
解n=4,
设该反比例函数的解析式为y=
k
x
(k≠0)
∵反比例函数在第一象限内的图象经过点B(4,4),
∴k=16,
设直线AB的解析式为y=ax+b(a≠0)
∵直线AB经过点A(-4,0),点B(4,4),
-4a+b=0
4a+b=4

解得:
a=
1
2
b=2

∴该反比例函数的解析式为y=
16
x
,直线AB的解析式为y=
1
2
x+2;         

(2)在y=
1
2
x+2中,令x=0,得y=2,
则点C的坐标是(0,2),
OC=2,
则S△OCB=
1
2
×
OC×|点B的横坐标|=
1
2
×2×4=4.
点评:本题考查反比例函数和一次函数的交点问题,关键是根据函数的图象求出点B的横坐标,用到的知识点是函数的解析式的求法,三角形的面积求法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•邯郸二模)若二次根式
x-2
有意义,则x的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•邯郸二模)在直角三角形ABC中,∠ACB=90°,已知AC和∠B,那么AB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•邯郸二模)已知m,n是方程x2-2x-1=0的两根,则(2m2-4m-1)(3n2-6n+2)的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•邯郸二模)如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•邯郸二模)一定滑轮,一端挂有重物,离地面高度5cm,另一端每向下拉1牛顿的力,重物上升1cm,现在向下拉x(牛顿)的力,重物离地面高度y(cm),则y与x的函数关系式为
y=x+5
y=x+5

查看答案和解析>>

同步练习册答案