精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,Rt△OAB的直角边OA在x轴的正半轴上,点B在第象限,将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B的对应点B′落在y轴的正半轴上,已知OB=2,∠BOA=30°.
(1)求点B和点A′的坐标;
(2)求经过点B和点B′的直线所对应的一次函数解析式,并判断点A是否在直线BB′上.

【答案】分析:(1)已知是直角三角形,并给出边和角,可先求得A,B点的坐标,进而根据旋转变换的特点,画图得出A′点的坐标;
(2)已知两点,根据待定系数法可以求出解析式,至于点A是否在直线上只需把点代入所求解析式,判断是否符合即可.
解答:解:(1)在△OAB中,
∵∠OAB=90°,∠BOA=30°,
∴AB=OB•sin∠BOA=2×sin30°=1,
OA=OB•cos∠BOA=2×cos30°=
∴点B的坐标为(,1),
过点A´作A´D垂直于y轴,垂足为D.
在Rt△ODA´中DA´=OA´•sin∠DOA'=×sin30°=
OD=OA´•cos∠DOA'=×cos30°=
∴A´点的坐标为().

(2)点B的坐标为(,1),点B'的坐标为(0,2),
设所求的解析式为y=kx+b,则
解得,K=
∴当时,
∴A´()在直线BB´上.
点评:本题是一个常规的一次函数题,学生得分率很高.主要错误在于一些学生在写点坐标时,纵坐标与横坐标调错,导致计算错误或在求一次函数的解析式时错误,得y=+2或y=k+2或其它答案,导致代入计算时错误.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案