精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知 三角形ABC各顶点在格点上

1)直接写出三角形ABC的三个顶点的坐标

A   B   C   

2)画出三角形ABC关于y轴对称的三角形A′B′C′.

3)求三角形ABC的面积;

4)直接与出A′C′y轴交点的坐标   

【答案】(1)(2,2),(3,0),(5,4);(2)作图见解析;(3)4;(4)(0,).

【解析】

1)利用平面直角坐标系中点的坐标特征写出ABC三点的坐标;
2)利用轴对称的性质找出A′B′C′点,然后连接即可;
3)用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积;
4)先利用待定系数法求出直线A′C′的解析式,然后计算自变量为0所对应的自变量的值,从而得到直线A′C′y轴交点的坐标.

解:(1ABC点的坐标为(22),(30),(54);
2)如图,三角形A′B′C′为所作;

3)三角形ABC的面积= 3×4-×3×2-×4×2-×2×1=12-3-4-1=4
4A′-22),C′-54),
设直线A′C′的解析式为y=kx+b
A′-22),C′-54)代入得

解得,,即y=-x+
∴直线A′C′y轴的交点坐标为(0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,过AB的中点EECOA,垂足为C,过点B作直线BDCE的延长线于点D,使得DB=DE.

(1)求证:BD是⊙O的切线;

(2)若AB=12,DB=5,求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图①,在直角三角形中,于点,可知(不需要证明);

(1)探究:如图②,,射线在这个角的内部,点的边上,且于点于点.证明:

(2)证明:如图③,点的边上,点内部的射线上,分别是的外角。已知.求证:

(3)应用:如图④,在中,.点在边上,,点在线段上,.若的面积为15,则的面积之和为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于 x 的方程 2x2+kx﹣1=0.

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是﹣1,求另一个根及 k 值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是边ADCD上的点,AE=EDDF=DC,连接EF并延长交BC的延长线于点G

(1)求证:ABE∽△DEF

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1=_____,k2=____,一次函数的图象交x轴于点_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),P为ABC所在平面上一点,且APB=BPC=CPA=120°,则点P叫做ABC的费马点.

(1)如果点P为锐角ABC的费马点,且ABC=60°.

①求证:ABP∽△BCP;

②若PA=3,PC=4,则PB=

(2)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD 相交于P点.如图(2)

①求CPD的度数;

②求证:P点为ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是Rt△ABC斜边BC上的高.

(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);

(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;

(3)在(2)的条件下,连结DEDH.求证:ED⊥HD.

查看答案和解析>>

同步练习册答案