精英家教网 > 初中数学 > 题目详情
13.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为(  )
A.B.C.D.

分析 根据旋转的性质即可得到结论.

解答 解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,
故选A.

点评 本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=$\frac{12}{13}$.
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围;
(3)若△AME∽△ENB,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是(  )
A.(2017,0)B.(2017$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)C.(2018,$\sqrt{3}$)D.(2018,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=2,DE=1,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2$\sqrt{3}$.
(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.
(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
②连接AP,当AP最大时,求AD′的值.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列各数中,比-3大1的数是(  )
A.4B.2C.-4D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知关于x的一元二次方程x2+2x+a=1的两根为x1,x2,且x1,x2满足x12-x1x2=0,试求a的值,并求出此时方程的两个实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.
(1)问实际每年绿化面积多少万平方米?
(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,-1,用树状图或列表的方法解决下列问题:
(1)将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.
(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀后再摸出一个球,将其标号记为b.求直线y=kx+b不经过第三象限的概率.

查看答案和解析>>

同步练习册答案