【题目】如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.
(1)判断线段OA,OP的数量关系,并说明理由.
(2)当OD=时,求CP的长.
(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最大值.
【答案】(1)OA=OP,理由见解析;(2)PC=2;(3)当x=2时,S1﹣S2有最大值是4
【解析】
(1)证明四边形OGBH是正方形,得BG=BH,∠GOH=90°,再证明△AGO≌△PHO(ASA),则OA=OP;
(2)如图2,作辅助线,证明△ODQ是等腰直角三角形,得OQ=DQ=1,证明△ADO≌△CDO(SAS),可得PC的长;
(3)如图3,作辅助线,构建三角形全等,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,根据S△AOD=S△COD,则S1﹣S2=S△POC==﹣x2+4x,配方后可得结论.
解:(1)OA=OP,理由是:
如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,
∵四边形ABCD是正方形,
∴∠ABO=∠CBO,AB=BC,
∴OG=OH,
∵∠OGB=∠GBH=∠BHO=90°,
∴四边形OGBH是正方形,
∴BG=BH,∠GOH=90°,
∵∠AOP=∠GOH=90°,
∴∠AOG=∠POH,
∴△AGO≌△PHO(ASA),
∴OA=OP;
(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,
∴∠OQD=90°,
∵∠ODQ=45°,
∴△ODQ是等腰直角三角形,
∵OD=,
∴OQ=DQ=1,
∵AD=CD,∠ADO=∠CDO,OD=OD,
∴△ADO≌△CDO(SAS),
∴AO=OC=OP,
∵OH⊥PC,
∴PH=CH=OQ=1,
∴PC=2;
(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,
设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,
由(2)知:△AOD≌△COD,
∴S△AOD=S△COD,
∴S1﹣S2=S1﹣S△COD=S△POC==﹣x2+4x=﹣(x﹣2)2+4,
当x=2时,S1﹣S2有最大值是4.
科目:初中数学 来源: 题型:
【题目】已知△ABC中,CA=CB,0°<∠ACB≤90°,点M、N分别在边CA,CB上(不与端点重合),BN=AM,射线AG∥BC交BM延长线于点D,点E在直线AN上,EA=ED.
(1)(观察猜想)如图1,点E在射线NA上,当∠ACB=45°时,①线段BM与AN的数量关系是 ; ②∠BDE的度数是 ;
(2)(探究证明)如图2点E在射线AN上,当∠ACB=30°时,判断并证明线段BM与AN的数量关系,求∠BDE的度数;
(3)(拓展延伸)如图3,点E在直线AN上,当∠ACB=60°时,AB=3,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点P是直线BC上方抛物线上的一动点,PE∥y轴,交直线BC于点E连接AP,交直线BC于点 D.
(1)求抛物线的函数表达式;
(2)当AD=2PD时,求点P的坐标;
(3)求线段PE的最大值;
(4)当线段PE最大时,若点F在直线BC上且∠EFP=2∠ACO,直接写出点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有边长为a的正方形卡片①,边长为b的正方形卡片②,两邻边长分别为a,b的矩形卡片③若干张.
(1)请用2张卡片①,1张卡片②,3张卡片③拼成一个矩形,在方框中画出这个矩形的草图;
(2)请结合拼图前后面积之间的关系写出一个等式;
(3)小明想用类似方法解释多项式乘法(a+3b)(2a+2b)的结果,那么需用卡片①______张,卡片②______张,卡片③______张.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.
(1)求∠ABD的度数;
(2)若AB=6,求PD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
(1)该班共有学生 人,并补全条形统计图;
(2)求“篮球”所在扇形圆心角的度数;
(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com