【题目】如图1,正方形ABCD与正方形AEFG的边AB,AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE,DG.
(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;
(2)如图3,如果α=45°,AB=2,AE=3 .
①求BE的长;②求点A到BE的距离;
(3)当点C落在直线BE上时,连接FC,直接写出∠FCD的度数.
【答案】
(1)
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠EAD=90°,
又∵四边形AEFG是正方形,
∴AE=AG,∠EAD+∠DAG=90°,
∴∠BAE=∠DAG.
在△ABE与△ADG中,
∵ ,
∴△ABE≌△ADG(SAS),
∴BE=DG
(2)
解:①如图1,作BN⊥AE于点N,
∵∠BAN=45°,AB=2,
∴AN=BN= .
在△BEN中,
∵BN= ,NE=3 ﹣ ,
∴BE= ;
②如图1,作AM⊥BE于点M,则S△ABE= AEBN= ×3 × = .
又∵S△ABE= BEAM= × ×AM= ,
∴AM= ,即点A到BE的距离
(3)
解:解:①如图2,连接AC,AF,CF,
∵四边形ABCD与AEFG是正方形,
∴∠ACD=∠AFE=45°,
∵∠DCE=90°
∴点A,C,E,F四点共圆,
∵∠AEF是直角,
∴AF是直径,
∴∠ACF=90°,
∵∠ACD=45°,
∴∠FCD=45°
②如图3,连接AC,AF,FG,CG
由(1)知∵△ABE≌△ADG,
∴∠ABE=∠ADG=90°,
∴DG和CG在同一条直线上,
∴∠AGD=∠AGC=∠BAG,
∵四边形ABCD与AEFG是正方形,
∴∠BAC=∠FAG=45°,
∴∠BAG+∠GAC=45°,∠BAG+∠BAF=45°,
∴∠AGD+∠GAC=45°,
∴∠BAG+∠BAF+∠AGD+∠GAC+∠AGF=180°,
∴点A,C,G,F四点共圆,
∵∠AGF是直角,
∴AF是直径,
∴∠ACF=90°,
∴∠FCD=90°+45°=135°
综上所述,∠FCD的度数为45°或135°.
【解析】(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再根据余角的性质,可得∠BAE=∠DAG,然后利用“SAS”证明△ABE≌△ADG,根据全等三角形对应边相等证明即可;(2)①作BN⊥AE于点N,根据勾股定理得出AN=BN= ,在△BEN中,根据勾股定理即可得出结论;②作AM⊥BE于点M,根据S△ABE=
【考点精析】关于本题考查的旋转的性质,需要了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时, 的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).
发现:
(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.
(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;
(3)如图2,当点P恰好落在BC边上时,求a及S阴影
拓展:
如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究:当半圆K与矩形ABCD的边相切时,求sinα的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:
摸球总次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和为8”出现的频数 | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和为8”出现的频率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是;
(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。
(1)求证:OE=OF;
(2)若BC=,求AB的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了绿化校园,我校决定修建一块长方形草坪,长米,宽米,并在草坪上修建如图所示的十字路,设小路的宽为米.
用含的式子分别表示出草坪的面积、小路的面积;
写出中多项式的项、次数,并说明是几次几项式?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,现有下列结论: ①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4
下列选项中选出的结论完全正确的是( )
A.①②③
B.①②④
C.①③④
D.①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com