ÒÑÖªÅ×ÎïÏßy=ax2+bx+c¾­¹ýP£¨£¬3£©£¬E£¨£¬0£©¼°Ô­µãO£¨0£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¹ýPµã×÷ƽÐÐÓÚxÖáµÄÖ±ÏßPC½»yÖáÓÚCµã£¬ÔÚÅ×ÎïÏ߶ԳÆÖáÓÒ²àÇÒλÓÚÖ±ÏßPCÏ·½µÄÅ×ÎïÏßÉÏ£¬ÈÎÈ¡Ò»µãQ£¬¹ýµãQ×÷Ö±ÏßQAƽÐÐÓÚyÖá½»xÖáÓÚAµã£¬½»Ö±ÏßPCÓÚBµã£¬Ö±ÏßQAÓëÖ±ÏßPC¼°Á½×ø±êÖáΧ³É¾ØÐÎOABC£¨Èçͼ£©£®ÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷OPCÓë¡÷PQBÏàËÆ£¿Èô´æÔÚ£¬Çó³öQµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èç¹û·ûºÏ£¨2£©ÖеÄQµãÔÚxÖáµÄÉÏ·½£¬Á¬½ÓOQ£¬¾ØÐÎOABCÄÚµÄËĸöÈý½ÇÐΡ÷OPC£¬¡÷PQB£¬¡÷OQP£¬¡÷OQAÖ®¼ä´æÔÚÔõÑùµÄ¹Øϵ£¬ÎªÊ²Ã´£¿

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©½«ÒÑÖªµÄÈýµã×ø±ê´úÈëÅ×ÎïÏß½âÎöʽÖнøÐÐÇó½â¼´¿É£®
£¨2£©¿É¸ù¾ÝÅ×ÎïÏߵĽâÎöʽÉè³öQµãµÄ×ø±ê£¬ÒªÊ¹¡÷OPCÓë¡÷PQBÏàËÆ£¬¿É·ÖÁ½ÖÖÇé¿ö£º
¢Ù¡÷OCP¡×¡÷PBQ£¬´Ëʱ¡ÏCOP=¡ÏBPQ£¬£¬ÓÃQµãµÄ×ø±ê±íʾ³öBP¡¢BQµÄ³¤£¬¸ù¾ÝÏ߶εıÈÀý¹Øϵʽ¼´¿ÉÇó³öQµãµÄ×ø±ê£®
¢Ú¡÷OCP¡×¡÷QPB£¬´Ëʱ¡ÏCPO=¡ÏBPQ£¬£¬·½·¨Í¬¢Ù
£¨3£©¸ù¾Ý£¨2£©µÃ³öµÄQµãµÄ×ø±ê½øÐÐÅжϼ´¿É£¬×¢ÒâÔËÓÃÕý·½ÐεÄÐÔÖʺÍһЩÌØÊâ½Ç£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£º
½âÖ®µÃ£¬a=-£¬b=£¬c=0£®
Òò¶øµÃ£¬Å×ÎïÏߵĽâÎöʽΪ£ºy=-x2+x£®

£¨2£©´æÔÚ£®
ÉèQµãµÄ×ø±êΪ£¨m£¬n£©£¬Ôò£¬
Ҫʹ¡÷OCP¡×¡÷PBQ£¬
ÔòÓУ¬¼´£¬
½âÖ®µÃ£¬m1=2£¬m2=£®
µ±m1=2ʱ£¬n=2£¬
ËùÒÔµÃQ£¨2£¬2£©
Ҫʹ¡÷OCP¡×¡÷QPB£¬ÔòÓУ¬¼´
½âÖ®µÃ£¬m1=3£¬m2=£¬
µ±m=ʱ£¬¼´ÎªPµã£¬
µ±m1=3ʱ£¬n=-3£¬
ËùÒÔµÃQ£¨3£¬-3£©£®
¹Ê´æÔÚÁ½¸öQµãʹµÃ¡÷OCPÓë¡÷PBQÏàËÆ£®QµãµÄ×ø±êΪ£¨2£¬2£©£¬£¨3£¬-3£©£®

£¨3£©ÔÚRt¡÷OCPÖУ¬
ÒòΪtan¡ÏCOP=£®
ËùÒÔ¡ÏCOP=30¶È£®
µ±QµãµÄ×ø±êΪ£¨2£¬2£©Ê±£¬¡ÏBPQ=¡ÏCOP=30¶È£®
ËùÒÔ¡ÏOPQ=¡ÏOCP=¡ÏB=¡ÏQAO=90¶È£®
Òò´Ë£¬¡÷OPC£¬¡÷PQB£¬¡÷OPQ£¬¡÷OAQ¶¼ÊÇÖ±½ÇÈý½ÇÐΣ®
ÓÖÔÚRt¡÷OAQÖУ¬
ÒòΪtan¡ÏQOA=£®
ËùÒÔ¡ÏQOA=30¶È£®
¼´ÓСÏPOQ=¡ÏQOA=¡ÏQPB=¡ÏCOP=30¶È£®
ËùÒÔ¡÷OPC¡×¡÷PQB¡×¡÷OQP¡×¡÷OQA£¬
ÓÖÒòΪQP¡ÍOP£¬QA¡ÍOA£¬¡ÏPOQ=¡ÏAOQ=30°£¬
ËùÒÔ¡÷OQA¡Õ¡÷OQP£®
µãÆÀ£º±¾ÌâÊÇÒ»µÀÉæ¼°º¯Êý¡¢ÏàËÆ¡¢Èý½ÇµÈ֪ʶµÄ×ÛºÏÌ⣬½â¾öµÚ3ÌâµÄ¹Ø¼üÔÚÓÚͨ¹ý¹Û²ìµÃ³ö¶Ô½á¹ûµÄºÏÀí²ÂÏëÔÚ½øÐÐÖ¤Ã÷£¬ÄѶÈÓ¦¸Ã²»»áºÜ´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©¾­¹ýA£¨-2£¬0£©£¬B£¨0£¬-4£©£¬C£¨2£¬-4£©Èýµã£¬ÇÒ¾«Ó¢¼Ò½ÌÍøÓëxÖáµÄÁíÒ»¸ö½»µãΪE£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÓÃÅä·½·¨ÇóÅ×ÎïÏߵĶ¥µãDµÄ×ø±êºÍ¶Ô³ÆÖ᣻
£¨3£©ÇóËıßÐÎABDEµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy=ax2ºÍÖ±Ïßy=kxµÄ½»µãÊÇP£¨-1£¬2£©£¬Ôòa=
 
£¬k=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

2¡¢ÒÑÖªÅ×ÎïÏßy=ax2+bx+cµÄ¿ª¿ÚÏòÏ£¬¶¥µã×ø±êΪ£¨2£¬-3£©£¬ÄÇô¸ÃÅ×ÎïÏßÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨ÆäÖÐb£¾0£¬c£¼0£©µÄ¶¥µãPÔÚxÖáÉÏ£¬ÓëyÖá½»ÓÚµãQ£¬¹ý×ø±êÔ­µãO£¬×÷OA¡ÍPQ£¬´¹×ãΪA£¬ÇÒOA=
2
£¬b+ac=3£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ãÖÝ£©ÒÑÖªÅ×ÎïÏßy1=ax2+bx+c£¨a¡Ù0£¬a¡Ùc£©¹ýµãA£¨1£¬0£©£¬¶¥µãΪB£¬ÇÒÅ×ÎïÏß²»¾­¹ýµÚÈýÏóÏÞ£®
£¨1£©Ê¹ÓÃa¡¢c±íʾb£»
£¨2£©ÅжϵãBËùÔÚÏóÏÞ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôÖ±Ïßy2=2x+m¾­¹ýµãB£¬ÇÒÓÚ¸ÃÅ×ÎïÏß½»ÓÚÁíÒ»µãC£¨
ca
£¬b+8
£©£¬Çóµ±x¡Ý1ʱy1µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸