精英家教网 > 初中数学 > 题目详情
19.【感知】如图①,△ABC是等边三角形,点D、E分别在AB、BC边上,且AD=BE,易知:△ADC≌△BEA.
【探究】如图②,△ABC是等边三角形,点D、E分别在边BA、CB的延长线上,且AD=BE,△ADC与△BEA还全等吗?如果全等,请证明:如果不全等,请说明理由.
【拓展】如图③,在△ABC中,AB=AC,∠1=∠2,点D、E分别在BA、FB的延长线上,且AD=BE,若AF=$\frac{3}{2}$CF=2BE,S△ABF=6,则S△BCD的大小为13.

分析 探究:利用平角的定义得出∠DAC=∠EBA即可得出结论;
拓展:先判断出△ADC≌△BEA,进而得出S△ADC=S△BEA,再利用同高的两三角形的面积的比等于底的比求出△ABE,△BCF的面积,即可得出结论.

解答 解:探究:△ADC与△BEA全等,
理由:在等边三角形ABC中,AB=AC,∠BAC=∠ABC=60°,
∴∠DAC=180°-∠BAC=120°,∠EBA=180°-∠ABC=120°,
∴∠DAC=∠EBA,
∵AD=BE,
∴△ADC≌△BEA;

拓展:∵∠1=∠2,
∴AF=BF,∠DAC=∠EBA,
∵AD=BE,AC=AB,
∴△ADC≌△BEA(SAS),
∴S△ADC=S△BEA
∵AF=2BE,AF=BF,
∴BF=2BE,
∴S△ABE=$\frac{1}{2}$S△ABF=3(同高的两三角形的面积比是底的比),
∴S△ADC=3,
∵AF=$\frac{3}{2}$CF,
∴S△BFC=$\frac{2}{3}$S△ABF=4(同高的两三角形的面积比是底的比),
∴S△BCD=S△BCF+S△ABF+S△ADC=13,
故答案为13.

点评 此题是三角形的综合题,主要考查了等边三角形的性质,等腰三角形的性质,全等三角形的判定和性质,同高的三角形面积的比等于底的比,解探究的关键是得出∠DAC=∠EBA,解拓展的关键是求出△ADC的面积,是一道基础题目.

练习册系列答案
相关习题

科目:初中数学 来源:2016~2017学年安徽省芜湖市九年级下学期第一次模拟考试数学试卷(解析版) 题型:单选题

有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是的增大而增大的概率是( )

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,⊙O中,弦AB、CD相交点P,弦CA、BD的延长线交于S,∠APD=2m°,∠PAC=m°+15°.
(1)求∠S的度数;
(2)连AD,BC,若$\frac{BC}{AD}$=$\sqrt{3}$,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,河的两岸m与n互相平行,A、B、C是m上的三点,P、Q是n上的两点,在A处测得∠QAB=30°,在B处测得∠QBC=60°,在C处测得∠PCB=45°,已知AB=BC=20米,求PQ的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为P,BP:PA=1:3,CD=2$\sqrt{3}$.
(1)求⊙O的半径;
(2)以CD为边作正方形CDEF,以C为圆心,CF的长为半径画弧交CB的延长线于点M,CB的延长线交DE于点N.
①求阴影部分的面积;
②连接OD,请猜想四边形OBND的形状,并证明你的猜想;
③若正方形CDEF绕着点O旋转一周,求边EF扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.一个不透明的袋中装有除颜色外均相同的8个黑球,4个白球和若干个红球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,A:经常使用;B:偶尔使用;C:了解但不使用;D:不了解,并绘制了如下两个不完整的统计图.

请根据以上信息,解答下列问题:
(1)这次被调查的总人数是200人,“C:了解但不使用”的人数是50人,“D:不了解”所占扇形统计图的圆心角度数为108°.
(2)某小区共有10000人,根据调查结果,估计使用过“共享单车”的大约有多少人?
(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为4$\sqrt{5}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,某教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面夹角是45°时,教学楼顶部A在地面上的影子F与墙角C的距离为18m(B、F、C在同一直线上).求教学楼AB的高;(结果保留整数)(参考数据:sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)

查看答案和解析>>

同步练习册答案