【题目】如图,在平面直角坐标系中,直线y=与抛物线y=交于A、B两点,且点A在x轴上,点B的横坐标为-4,点P为直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点Q,PH⊥AB于H.
(1)求b的值及sin∠PQH的值;
(2)设点P的横坐标为t,用含t的代数式表示点P到直线AB的距离PH的长,并求出PH之长的最大值以及此时t的值;
(3)连接PB,若线段PQ把△PBH分成成△PQB与△PQH的面积相等,求此时点P的坐标.
【答案】(1)b=-1,;(2),当t=-1时,PH有最大值为;(3)P(-3,0).
【解析】
(1)令y=0,求出点A的坐标,然后把点A的坐标代入直线解析式,求出点B的值,然后根据点A和点C的坐标,求出OA和OC的长度,根据勾股定理求出AC的长度,根据PQ∥OC,可得∠PQH=∠OCA,然后求出sin∠PQH的值;
(2)求出点P和点Q的坐标,运用三角函数,求出PH的函数关系式,运用求最大值的方法求解即可.
(3)作BD⊥PQ交PQ的延长线于点D,由S△PQB=S△PQH,得出BQ=QH,利用三角函数求出QH和BQ的关系式,运用相等的关系求出t,即可得出点P的坐标.
解:(1)令y=0得:,化简x2+x-6=0,解得x1=-3,x2=2,
∴A(2,0),
∵A(2,0)在直线上,
∴1+b=0,解得b=-1,
∴OC=1,OA=2,
,
∵PQ∥OC,
∴∠PQH=∠OCA,
,
(2),
,
,
,
∴当t=-1时,PH有最大值为,
(3)如图,作BD⊥PQ交PQ的延长线于点D,设点P的横坐标为t,
∵S△PQB=S△PQH,
∴BQ=QH,
在RT△PHQ中,
,
,
,
在RT△BDQ中,
∵∠BQD=∠PQH,
,
,
,
,
,
∴t2+7t+12=0,
∴t1=-3,t2=-4(舍去),
∴P(-3,0).
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角线坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.
(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;
(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;
(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为美化校园,计划对面积为400平方米的花坛区域进行绿化,安排甲工程队或乙工程队完成.已知甲队平均每天完成绿化的面积是乙队的2倍,并且甲队比乙队能少用4天完成任务,求甲、乙两工程队平均每天能完成绿化的面积分别是多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程mx2+(4-3m)x+2m-8=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个根分别为x1、x2(x1<x2),若n=x2-x1m,且点B(m,n)在x轴上,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】特产店销售一种水果,其进价每千克40元,按60元出售,平均每天可售100千克,后来经过市场调查发现,单价每降低2元,则平均每天可增加20千克销量.
(1)若该专卖店销售这种核桃要想平均每天获利2240元,每千克水果应降多少元?
(2)若该专卖店销售这种核桃要想平均每天获利最大,每千克水果应降多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,弦AC⊥BD于点E,连接AB,CD,BC
(1)求证:∠AOB+∠COD=180°;
(2)若AB=8,CD=6,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD,点P在射线CB上运动(不包含点B、C),连接DP,交AB于点M,作BE⊥DP于点E,连接AE,作∠FAD=∠EAB,FA交DP于点F.
(1)如图a,当点P在CB的延长线上时,
①求证:DF=BE;
②请判断DE、BE、AE之间的数量关系并证明;
(2)如图b,当点P在线段BC上时,DE、BE、AE之间有怎样的数量关系?请直接写出答案,不必证明;
(3)如果将已知中的正方形ABCD换成矩形ABCD,且AD:AB=:1,其他条件不变,当点P在射线CB上时,DE、BE、AE之间又有怎样的数量关系?请直接写出答案,不必证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com