【题目】如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足什么条件时,⊙P与直线CD相交?
科目:初中数学 来源: 题型:
【题目】我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的篇数(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人数(人) | 20 | 28 | m | 16 | 12 |
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 a,b,c 分别是△ABC 的三边长.
(1)分解因式:①ac﹣bc= ,②﹣a2+2ab﹣b2= ;
(2)若 ac﹣bc=﹣a2+2ab﹣b2,试判断△ABC 的形状;并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图 1,O 是等边三角形 ABC 内一点,连接 OA,OB,OC,且 OA=3,OB=4,OC=5,将△BAO 绕点 B 顺时针旋转后得到△BCD,连接 OD.
填空:①旋转角为 °;②线段 OD 的长是 ;③∠BDC= °;
(2)如图 2,O 是△ABC 内一点,且∠ABC=90°,BA=BC. 连接 OA,OB,OC,将△BAO 绕点 B 顺时针旋转后得到△BCD,连接 OD.当 OA,OB,OC 满足什么条件时,∠BDC=135°?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线,
(1)如图1,点在直线
上的左侧,直接写出
,
和
之间的数量关系是 .
(2)如图2,点在直线
的左侧,
,
分别平分
,
,直接写出
和
的数量关系是 .
(3)如图3,点在直线
的右侧
,
仍平分
,
,那么
和
有怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).
(1)请在网格平面内作出平面直角坐标系;
(2)将△ABC平移至△DEF,使得A、B、C的对应点依次是D、E、F,已知D(2,3),请在网格中作出△DEF;
(3)若Q(a,b)是△DEF内一点,则△ABC内点Q的对应点点P的坐标是 (用a、b表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2 cm,△PMN是一块直角三角板(∠N=30°),PM>2 cm,PM与BC均在直线l上,开始时M点与B点重合,将三角板向右平行移动,直至M点与C点重合为止.设BM=x cm,三角板与正方形重叠部分的面积为y cm2.
下列结论:
①当0≤x≤时,y与x之间的函数关系式为y=
x2;
②当时,y与x之间的函数关系式为y=2x-
;
③当MN经过AB的中点时,y= (cm2);
④存在x的值,使y= S正方形ABCD(S正方形ABCD表示正方形ABCD的面积).
其中正确的是______(写出所有正确结论的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com