精英家教网 > 初中数学 > 题目详情
9.计算:${(\frac{1}{3})}^{-1}$+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$.

分析 本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.

解答 解:${(\frac{1}{3})}^{-1}$+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$
=3+$\sqrt{3}$-1-2×$\frac{\sqrt{3}}{2}$+1-2
=3+$\sqrt{3}$-1-$\sqrt{3}$+1-2
=1.

点评 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根等考点的运算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.
(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.
(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是2<AD<8;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.三元一次方程组$\left\{\begin{array}{l}2x-3y+4z=3\\ 3x-2y+z=7\\ x+2y-3z=1\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}x=-2\\ y=1\\ z=-3\end{array}\right.$B.$\left\{\begin{array}{l}x=-3\\ y=-2\\ z=1\end{array}\right.$C.$\left\{\begin{array}{l}x=1\\ y=-3\\ z=-2\end{array}\right.$D.$\left\{\begin{array}{l}x=1\\ y=-2\\ z=-3\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知某种纸张的厚度为0.0002米,0.0002用科学记数法表示为2×10-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:
(1)36(-x+1)2=25         
(2)2(x-1)3=-$\frac{125}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解下列方程(组)
①3x=1+2(x-2)
②$\frac{x-1}{2}-\frac{2x+1}{3}=1$
③$\left\{\begin{array}{l}{2x+y=1}\\{3x-2y=5}\end{array}\right.$
④$\left\{\begin{array}{l}{a-2b=4}\\{2a+b+2=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.对x,y定义一种新运算T,规定:T(x,y)=$\frac{ax+by}{x+y}$(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=$\frac{a×0+b×1}{0+1}$=b,已知T(1,1)=2.5,T(4,-2)=4.
(1)求a,b的值;
(2)若关于m的不等式组$\left\{\begin{array}{l}{T(4m,5-4m)≤3}\\{T(2m,3-2m)>P}\end{array}\right.$恰好有2个整数解,求实数P的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.选择适当的方法解下列方程
(1)3x2-x-4=0
(2)(x-1)2=4(x-5)2

查看答案和解析>>

同步练习册答案