精英家教网 > 初中数学 > 题目详情

如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).

(1)求抛物线的解析式;
(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.

(1);(2)该外接圆的圆心为AB的中点,且坐标为:

解析试题分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可求解;
(2)首先根据抛物线的解析式确定A点、B点、C点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
试题解析:(1)∵点B(4,0)在抛物线的图象上,∴,∴.∴抛物线的解析式为:
(2)△ABC为直角三角形.令x=0,得:y=-2,∴C(0,-2),令y=0,得,∴x1=-1,x2=4,∴A(-1,0),B(4,0),∴AB=5,AC=5BC=20,∴AC2+BC2=AB2,∴△ABC为直角三角形,∴AB为△ABC外接圆的直径,∴该外接圆的圆心为AB的中点,且坐标为:
考点: ①待定系数法求二次函数解析式;②勾股定理逆定理;③三角形的外心

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2–kx+k–1(k>2).

(1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点;
(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若,求抛物线的表达式;
(3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).

⑴△EFG的边长是___________ (用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.

(1)求C点的坐标及抛物线的解析式;(6分)
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(4分)
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由. (4分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量W(台),销售单价x(元)满足W=-2x+80,设销售这种台灯每天的利润为y(元).求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图像经过点(0,-4),且当x=2,有最大值—2。求该二次函数的关系式:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).

查看答案和解析>>

同步练习册答案