精英家教网 > 初中数学 > 题目详情
(2012•东莞)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
分析:(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论;
(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8-x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=
1
2
AD=4,再根据tan∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结论.
解答:(1)证明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,
∴∠ABG=∠ADE,
在△ABG与△C′DG中,
∠BAD=∠C′
AB=C′D
∠ABG=∠ADC′

∴△ABG≌△C′DG;

(2)解:∵由(1)可知△ABG≌△C′DG,
∴GD=GB,
∴AG+GB=AD,设AG=x,则GB=8-x,
在Rt△ABG中,
∵AB2+AG2=BG2,即62+x2=(8-x)2,解得x=
7
4

∴tan∠ABG=
AG
AB
=
7
4
6
=
7
24


(3)解:∵△AEF是△DEF翻折而成,
∴EF垂直平分AD,
∴HD=
1
2
AD=4,
∴tan∠ABG=tan∠ADE=
7
24

∴EH=HD×
7
24
=4×
7
24
=
7
6

∵EF垂直平分AD,AB⊥AD,
∴HF是△ABD的中位线,
∴HF=
1
2
AB=
1
2
×6=3,
∴EF=EH+HF=
7
6
+3=
25
6
点评:本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•东莞)如图,小山岗的斜坡AC的坡度是tanα=
34
,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东莞)如图,直线y=2x-6与反比例函数y=
kx
(x>0)
的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标;
(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东莞)如图,抛物线y=
1
2
x2-
3
2
x-9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东莞)如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东莞)如图,在?ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是
3-
1
3
π
3-
1
3
π
(结果保留π).

查看答案和解析>>

同步练习册答案