精英家教网 > 初中数学 > 题目详情
如图,将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,已知,PM=3,PN=4,,那么矩形纸片ABCD的面积为           

试题分析:将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,BM=PM,CN=PN;已知,PM=3,PN=4,在中由勾股定理得,根据直角三角形的面积公式,在,解得h= ,由题意得边MN上高与矩形的宽相等,所以AB=;因为BC=BM+MN+NC=3+5+4=12,所以矩形纸片ABCD的面积==12=
点评:本题考查折叠, 矩形,勾股定理,要求考生掌握折叠的特征,矩形的性质,以及勾股定理的内容
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,将一根长为15㎝的筷子置于底面直径为5㎝的装满水的圆柱形水杯中,已知水深为12㎝,设筷子露出水面的长为h㎝,则h的取值范围是________________

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.
情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;

情形二:如图3,沿 △ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;
将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合.
 
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC  (填“是”或“不是”)△ABC的好角;
(2)若经过三次折叠发现∠BAC是△ABC的好角,请探究∠B与∠C之间的等量关系(不妨设∠B>∠C).
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C之问的等量关系为      .(不妨设∠B>∠C)
应用提升:
(3)小丽找到一个三角形,三个角分别为15º,60º,l05º,发现60º和l05º的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4º,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,直线a//b,∠1=130°,∠2=70°,则∠3的度数是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把一张形状是矩形的纸片剪去其中某一个角,剩下的部分是一个多边形,则这个多边形的内角和不可能是(  )。
A.720°B.540°C.360°D.180°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

命题“中至多有一个直角或钝角”的反设是                 .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知有一张三角形纸片ABC的一边AB=10,若D为AB边上的点,过点D作DE//BC交AC于点E,分别过点D、E作DF⊥BC,EG⊥BC,垂足分别为点F、点G,把三角形纸片ABC分别沿DE、DF、EG按图1方式折叠,点A、B、C分别落在A´、B´、C´处.若A´、B´、C´在矩形DFGE内或者其边上,且互不重合,此时我们称△A´B´C´(即图中阴影部分)为“重叠三角形”.

(1)实验操作:当AD=4时,①若∠A=90°,AB=AC,请在图2中画出“重叠三角形”,= ; 
②若AB=AC,BC=12,如图3,= ;③若∠B=30°,∠C=45°,如图4,= ;                     
(2)实验探究:若△ABC为等边三角形(如图5),设AD的长为m,若重叠三角形A´B´C´存在,试用含m的代数式表示重叠三角形A´B´C´的面积,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F。
求证:△BEF≌△CDF

查看答案和解析>>

同步练习册答案