分析 (1)由根的判别式即可得4a2-4(5$\sqrt{3}$+b)(5$\sqrt{3}$-b)=0,得出即a2+b2=(5$\sqrt{3}$)2=c2即可判断;
(2)由三角函数及勾股定理分别求出a、b的值,即可得答案
解答 解:(1)∵关于x的方程(5$\sqrt{3}$+b)x2+2ax+5$\sqrt{3}$-b=0有两个相等的实数根,
∴△=0,即4a2-4(5$\sqrt{3}$+b)(5$\sqrt{3}$-b)=0,
∴a2-(5$\sqrt{3}$)2+b2=0,即a2+b2=(5$\sqrt{3}$)2=c2,
∴△ABC是直角三角形;
(2)∵c=5$\sqrt{3}$,sinA=$\frac{3}{5}$,
∴a=csinA=3$\sqrt{3}$,b=$\sqrt{{c}^{2}-{a}^{2}}$=4$\sqrt{3}$,
则△ABC的面积为$\frac{1}{2}$×3$\sqrt{3}$×4$\sqrt{3}$=18.
点评 本题主要考查一元二次方程根的判别式、勾股定理及其逆定理,熟练掌握一元二次方程的根的判别式与勾股定理的逆定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com