精英家教网 > 初中数学 > 题目详情
如图,已知C、D是双曲线,y=
m
x
在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,设C、D的坐标分别是(x1,y1)、(x2,y2),连接OC、OD.
(1)求证:y1<OC<y1+
m
y1

(2)若∠BOC=∠AOD=a,tana=
1
3
,OC=
10
,求直线CD的解析式;
(3)在(2)的条件下,双曲线上是否存在一点P,使得S△POC=S△POD?若存在,请给出证明;若不存在,请说明理由.
(1)证明:过点C作CG⊥x轴,垂足为G,则CG=y1,OG=x1.(1分)
∵点C(x1,y1)在双曲线y=
m
x
上,
∴x1=
m
y1

∵在Rt△OCG中,CG<OC<CG+OG,∴y1<OC<y1+
m
y1
(3分)

(2)在Rt△GCO中,∠GCO=∠BOC=α,
tana=
OG
CG
=
1
3
,即
x1
y1
=
1
3
,y1=3x1
∵OC2=OG2+CG2,OC=
10

∴10=x12+y12,即10=x12+(3x12
解之,得x1=±1.∵负值不合题意,∴x1=1,y1=3.∴点C的坐标为(1,3).(4分)
∵点C在双曲线y=
m
x
上,
∴3=
m
1
,即m=3
∴双曲线的解析式为y=
3
x
(5分)
过点D作DH⊥x轴,垂足为H.则DH=y2,OH=x2
在Rt△ODH中,tana=
DH
OH
=
y2
x2
=
1
3
,即x2=3y2
又y2=
3
x2
,则3y22=3.
解之,得y2=±1.
∵负值不合题意,∴y2=1,x2=3
∴点D的坐标为(3,1)(6分)
设直线CD的解析式为y=kx+b.
则有
3=k+b
1=3k+b
,解得
k=-1
b=4

∴直线CD的解析式为y=-x+4.(7分)

(3)双曲线y=
3
x
上存在点P,使得S△POC=S△POD,这个点P就是
∠COD的平分线与双曲线y=
3
x
的交点(8分)
证明如下:
∵点P在∠COD的平分线上.
∴点P到OC、OD的距离相等.
又OD=
OH2+DH2
=
x22+y22
=
10
=OC
∴S△POD=S△POC.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点C在反比例函数y=
k
x
的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数y=
k
x
的解析式;
(2)将过点O且与OC所在直线关于y轴对称的直线向上平移2个单位后得到直线AB,如果CD=1,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:在平面直角坐标系中,△ABC是等腰直角三角形,∠ACB=Rt∠,CA⊥x轴,垂足为点A.点B在反比例函数y1=
4
x
(x>0)
的图象上.反比例函数y2=
2
x
(x>0)
的图象
经过点C,交AB于点D,则点D的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-1,n),B(
1
2
,-2)是一次函数y=kx+b的图象和反比例函数y=
m
x
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴交点C的坐标及△AOB的面积;
(3)求方程kx+b-
m
x
=0的解(请直接写出答案);
(4)在y轴上是否存在一点P,使三角形PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数y=
k
x
的图象经过点P(2,-1),则它的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数y=
m+2
x
的图象在第二、四象限,则m的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一块长方形花圃的面积为12,则它的长y与宽x之间的关系用图象大致可表示为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-
1
3
x+2
的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=
k
y
(x>0)
的图象于点Q,且tan∠OAQ=
1
3
.连接OP、OQ,四边形OQAP的面积为6.
(1)求k的值;
(2)判断四边形OQAP的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,已知菱形ABCD的面积为3,顶点A在双曲线y=
k
x
上,CD与y轴重合,则k的值是______.

查看答案和解析>>

同步练习册答案