【题目】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.
(1)求证:△ABD∽△DCE;
(2)若CD=12,CE=3,求△ABC的周长.
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 .
(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+x﹣4与x轴交于A,B(A在B的左侧),与y轴交于点C,抛物线上的点E的横坐标为3,过点E作直线l1∥x轴.
(1)点P为抛物线上的动点,且在直线AC的下方,点M,N分别为x轴,直线l1上的动点,且MN⊥x轴,当△APC面积最大时,求PM+MN+EN的最小值;
(2)过(1)中的点P作PD⊥AC,垂足为F,且直线PD与y轴交于点D,把△DFC绕顶点F旋转45°,得到△D'FC',再把△D'FC'沿直线PD平移至△D″F′C″,在平面上是否存在点K,使得以O,C″,D″,K为顶点的四边形为菱形?若存在直接写出点K的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为激发学生的阅读兴趣,培养学生良好的阅读习惯,我区某校欲购进一批学生喜欢的图书,学校组织学生会随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)填空或选择:此次共调查了______名学生;图2中“小说类”所在扇形的圆心角为______度;学生会采用的调查方式是______.A.普查 B.抽样调查
(2)将条形统计图(图1)补充完整;
(3)若该校共有学生2500人,试估计该校喜欢“社科类”书籍的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O ,交BC于点D,交CA的延长线于点E,连接AD,DE.
(1)求证:D是BC的中点
(2)若DE=3, AD=1,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD⊥BC于点D,点E是线段AD上的一个动点,连接EC,线段EC绕点E顺时针旋转60°得到线段EF,连接DF、BF,已知AD=5cm,BC=8cm,设AE=xcm,DF=y1cm,BF=y2cm.小王根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小王的探究过程,请补充完整:
(1)对照下表中自变量x的值进行取点,画图,测量,分别得到了y1,y2与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.52 | 2.07 | 2.05 | 2.48 |
| 4.00 |
y2/cm | 1.93 | 2.93 | 3.93 | 4.93 | 5.93 | 6.93 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象:
(3)结合函数图象,解决问题:
①当AE的长度约为_______cm时,DF最小;
②当△BDF是以BF为腰的等腰三角形时,AE的长度约为______cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).
请根据图中提供的信息,解答下列问题:
(1)学生会随机调查了 名学生;
(2)补全频数分布直方图;
(3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上.延长AD交FG于点H
(1)求证:△EDC≌△HFE;
(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:
在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),
以AD为边在AD右侧作正方形ADEF,连接CF.
(1).如图1,当点D在线段BC上时,
①.BC与CF的位置关系为:________________________________.
②.BC,CD,CF之间的数量关系为:_______________________________.
(2).如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,
请给予证明;若不成立,请你写出正确结论再给予证明.
(3).如图3,将图2中的 AB=AC改变成AB=kAC,正方形ADEF改成矩形ADEF,且AD=kAF,其它条件不变 ,猜想线段BD与CF之间的关系,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com