精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.

【答案】(1)见解析;(2)运动到AC的中点时;(3)运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时

【解析】试题解析:(1)根据平行线性质和角平分线性质及,由平行线所夹的内错角相等易证;

(2)当点O运动到AC的中点时,四边形AECF是矩形,根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.

(3))由OE=OF,OA=OC可判断四边形AECF为平行四边形,再证明∠ECF=90°,则可判断四边形AECF为矩形,根据正方形的判定方法,当∠2=45°时,四边形AECF为正方形,于是可得∠ACB=90°.

试题解析:(1)证明:∵CE平分∠ACB,

∴∠1=∠2,

又∵MN∥BC,

∴∠1=∠3,

∴∠3=∠2,

∴EO=CO,

同理,FO=CO,

∴EO=FO;

(2)解:当点O运动到AC的中点时,四边形AECF是矩形.

理由如下:

∵EO=FO,点O是AC的中点.

∴四边形AECF是平行四边形,

∵CF平分∠BCA的外角,

∴∠4=∠5,

又∵∠1=∠2,

∴∠2+∠4=×180°=90°.

即∠ECF=90度,

∴四边形AECF是矩形.

(3)∵OE=OF,OA=OC,

∴四边形AECF为平行四边形,

∵CE平分∠ACB,CF平分∠ACB的外角,

∴∠ECF=90°,

∴四边形AECF为矩形,

当∠2=45°时,四边形AECF为正方形,

此时∠ACB=90°,

即当点O是AC的中点,△ABC中∠ACB=90°时,四边形AECF是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AM=CM,MP⊥AB于点P.求证:BP2=AP2+BC2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b的图象与x轴交于点A(-2,0),与y轴交于点B.AOB的面积为8,求一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD中, AB16 , BC18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' .

(I) AE0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;

(II) AE3 时, △CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;

(III)AE8时,且点 B' 落在矩形内部(不含边长,试直接写出 DB' 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.
(1)如图1,若点F与点A重合,求证:AC=BC;
(2)若∠DAF=∠DBA,
①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;
②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是(  )

A.乙前4秒行驶的路程为48米
B.在0到8秒内甲的速度每秒增加4米/秒
C.两车到第3秒时行驶的路程相等
D.在4至8秒内甲的速度都大于乙的速度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:AD平分∠CAE,AD∥BC.

(1)求证:△ABC是等腰三角形.

(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠B=∠D.说明ABCD的理由.

补全下面的说理过程,并在括号内填上适当的理由

解:∵∠1+∠2=180°(已知)

∠2=∠AHB   

   (等量代换)

DEBF   

∴∠D=∠      

∵∠   =∠B(等量代换)

ABCD   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,B,C两点把线段AD分成4:5:7的三部分,E是线段AD的中点,CD=14厘米.

(1)求EC的长.

(2)求AB:BE的值.

查看答案和解析>>

同步练习册答案