精英家教网 > 初中数学 > 题目详情
14.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2$\sqrt{3}$.

分析 能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.

解答 解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,

设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,
∵△ABC是等边三角形,
∴∠A=60°,∠BOC=2∠A=120°,
∵OB=OC,OE⊥BC,
∴∠BOE=60°,BE=EC=3,
∴sin60°=$\frac{BE}{OB}$,
∴OB=2$\sqrt{3}$,
故答案为2$\sqrt{3}$.

点评 本题考查等边三角形的性质、三角形外接圆的性质、锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.计算:(3a)2•a3=9a5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.因式分解:
(1)2x2-4x+2;
(2)a2(a-b)+(b-a).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.命题“两直线平行,同位角相等”的逆命题是真命题.(填“真”或“假”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列各式计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.4$\sqrt{3}$-3$\sqrt{4}$=1C.2$\sqrt{3}$×3$\sqrt{3}$=6D.$\sqrt{27}$÷$\sqrt{3}$=3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是①②③④.(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式(也称关系式);
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)如图1,点P是?ABCD内的一点,分别过点B、C、D作AP的垂线BE、CF、DH,垂足分别为E、F、H,猜想BE、CF、DH三者之间的关系,并证明;
(2)如图2,若点P在?ABCD的外部,△APB的面积为18,△APD的面积为3,求△APC的面积;
(3)如图3,在(2)的条件下,增加条件:AB=BC,∠APC=ABC=90°,设AP、BP分别于CD相交于点M、N,当DM=CN时,$\frac{CP}{PM}$=$\frac{6\sqrt{2}}{5}$(请直接写出结论).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,已知⊙O的直径AB=3cm,C为⊙O上的一点,sinA=$\frac{2}{5}$,则BC=$\frac{6}{5}$ cm.

查看答案和解析>>

同步练习册答案