精英家教网 > 初中数学 > 题目详情
某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).精英家教网
分析:本题通过图象反映了二次函数,一次函数的有关数量,就可以简便地求出两个函数关系式了.要找准毛利润的等量关系:毛利润=销售单价×年产量-费用.
解答:解:设年产量为x吨,费用为y(万元),销售单价为z(万元),则0≤x≤1000,
由图(1)知将点(1000,10000)代入到y=ax2可求得y=
1
100
x2
由图(2)求得z=-
1
100
x+30,
设毛利润为w(万元),
则w=xz-y=x(-
1
100
x+30)-
1
100
x2=-
1
50
(x-750)2+11250.
答:年产量是750吨时,所获毛利润最大,为11250万元.
点评:本题已知信息由两个图象提供,图1是抛物线的一部分,图2是线段,看懂两图,理解关系式:毛利润=销售额-费用是解本题的关键.由于在图象中提供的数据已满足求两个图象解析式的需要,故两个解析式均可求.本题易错在不注意销售额与销售单价的关系,而盲目地用y=y2-y1(销售单价-费用).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间的函数图象是线段(如图所示),若生产出的产品都能在当年销售完,则年产量是
 
吨时,所获毛利润最大(毛利润=销售额-费用).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额-费用)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某种产品的年产量不超过1 000t,该产品的年产量与费用之间的函数图象是顶点在原点的抛物线的一部分(如图甲);该产品的年销量与销售单价之间的函数图象是线段(如图乙),若生产的产品都能在当年销售完,问该产品年产量为多少吨时,所获得的毛利润最大?(毛利润=销售额-费用)

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》好题集(08):34.4 二次函数的应用(解析版) 题型:填空题

某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间的函数图象是线段(如图所示),若生产出的产品都能在当年销售完,则年产量是    吨时,所获毛利润最大(毛利润=销售额-费用).

查看答案和解析>>

同步练习册答案