【题目】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.
(1)求证: DE=AD+BE.
(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE又怎样的关系?请直接写出你的结论,不必说明理由.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)、根据三垂直得出∠ACD=∠CBE,然后得出△ADC和△CEB全等,从而得出AD=CE,DC=BE,从而得到结论;(2)、首先证明△ADC和△CEB全等,从而得出AD=CE,DC=BE,得出结论.
试题解析:(1)、∵∠ACB=90°, ∴∠ACD+∠BCE=90°, 而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°, ∴∠ACD=∠CBE.
在△ADC和△CEB中,∠ADC=∠CBE,∠ACD=∠CBE,AC=BC ∴△ADC≌△CEB,
∴AD=CE,DC=BE, ∴DE=DC+CE=BE+AD;
(2)、在△ADC和△CEB中,∠ADC=∠CBE=90°,∠ACD=∠CBE,AC=CB ∴△ADC≌△CEB,
∴AD=CE,DC=BE, ∴DE=CE-CD=AD-BE;
科目:初中数学 来源: 题型:
【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)、求证:DE⊥AG;
(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一条抛物线的形状与y=﹣2x2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是( )
A.y=2(x﹣4)2﹣2
B.y=﹣2(x﹣4)2﹣2
C.y=﹣2(x﹣4)2+2
D.y=﹣2(x+4)2﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分5分)画图并填空:
如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.
(1)画出平移后的△A′B′C′,(利用网格点和三角板画图)
(2)画出AB边上的高线CD;
(3)画出BC边上的中线AE;
(4)在平移过程中高CD扫过的面积为 .(网格中,每一小格单位长度为1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com