精英家教网 > 初中数学 > 题目详情
3.如图,两个全等的△ABC和△DFE重叠在一起,固定△ABC,将△DEF进行如下变换:
(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD.请直接写出S△ABC与S四边形AFBD的关系;
(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△ABC应满足什么条件?请给出证明;
(3)在(2)的条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你在图3的位置画出图形,并求出sin∠CGF的值.

分析 (1)利用平行线的性质以及三角形面积关系得出答案;
(2)利用平行四边形的判定得出四边形AFBD为平行四边形,进而得出AF=$\frac{1}{2}$BC=BF,求出答案;
(3)根据题意画出图形,利用sin∠CGF=$\frac{CF}{CG}$求出即可.

解答 解:(1)S△ABC=S四边形AFBD
理由:由题意可得:AD∥EC,
则S△ADF=S△ABD
故S△ACF=S△ADF=S△ABD
则S△ABC=S四边形AFBD

(2)△ABC为等腰直角三角形,即:AB=AC,∠BAC=90°,
理由如下:∵F为BC的中点,
∴CF=BF,
∵CF=AD,
∴AD=BF,
又∵AD∥BF,
∴四边形AFBD为平行四边形,
∵AB=AC,F为BC的中点,
∴AF⊥BC,
∴平行四边形AFBD为矩形,
∵∠BAC=90°,F为BC的中点,
∴AF=$\frac{1}{2}$BC=BF,
∴四边形AFBD为正方形;

(3)如图3所示:
由(2)知,△ABC为等腰直角三角形,AF⊥BC,
设CF=k,则GF=EF=CB=2k,
由勾股定理得:CG=$\sqrt{5}$k,
sin∠CGF=$\frac{CF}{CG}$=$\frac{k}{\sqrt{5}k}$=$\frac{\sqrt{5}}{5}$.

点评 此题主要考查了正方形的判定以及等腰直角三角形的性质和锐角三角函数关系等知识,熟练应用正方形的判定方法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.点E、F、G分别在正方形ABCD边AB、AD、BC上.
(1)如图1,若△EFG是直角形,求证:△AEF∽△BGE;
(2)如图2,若△EFG是等边三角形,且点E是AB的中点,求$\frac{BG}{BC}$的值;
(3)如图3,若△EFG是等边三角形,且$\frac{AE}{BE}$=2,AB=a,求$\frac{BG}{BC}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,直线y=-$\sqrt{3}$x+3分别与x轴、y轴交于A、B两点,点P是y=-$\frac{\sqrt{3}}{x}$(x<0)的图象上一点,PH⊥x轴于H,当以P为圆心,PH为半径的圆与直线AB相切时,OH的长为$\frac{\sqrt{15}-\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).
x(亩)20253035
z(元)1700160015001400
(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一  如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=$\sqrt{3}$.tanD=tan15°=$\frac{1}{2+\sqrt{3}}$=$\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$=2-$\sqrt{3}$.
思路二  利用科普书上的和(差)角正切公式:tan(α±β)=$\frac{tan{α}_{-}^{+}tanβ}{{1}_{+}^{-}tanαtanβ}$.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°-45°)=$\frac{tan60°-tan45°}{1+tan60°tan45°}$=$\frac{\sqrt{3}-1}{1+\sqrt{3}}$=2-$\sqrt{3}$.
思路三  在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四  …
请解决下列问题(上述思路仅供参考).
(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;
(3)拓展:如图3,直线y=$\frac{1}{2}$x-1与双曲线y=$\frac{4}{x}$交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.北京市2009-2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980万人次,你的预估理由是因为2012-2013年发生数据突变,故参照2013-2014增长进行估算..

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列事件是必然事件的为(  )
A.明天太阳从西方升起
B.掷一枚硬币,正面朝上
C.打开电视机,正在播放“河池新闻”
D.任意-个三角形,它的内角和等于180°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知点A(4,y1),B($\sqrt{2}$,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1、y2、y3的大小关系是y3>y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:$\frac{{x}^{2}-6x+9}{{x}^{2}-9}$÷$\frac{x-3}{2}$,其中x=$\sqrt{2}$-3.

查看答案和解析>>

同步练习册答案