精英家教网 > 初中数学 > 题目详情
(2009•咸宁)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.
(1)证明△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.
【答案】分析:(1)根据已知利用SAS判定△A′AD′≌△CC′B;
(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC′=AC,AB=AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.
解答:(1)证明:∵四边形ABCD是矩形,
△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.
∴∠D′A′C′=∠BCA.
∴△A′AD′≌△CC′B.

(2)解:当点C′是线段AC的中点时,四边形ABC′D′是菱形.
理由如下:
∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴C′D′=CD=AB.
由(1)知AD′=C′B.
∴四边形ABC′D′是平行四边形.
在Rt△ABC中,点C′是线段AC的中点,
∴BC′=AC.
而∠ACB=30°,
∴AB=AC.
∴AB=BC′.
∴四边形ABC′D′是菱形.
点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(24)(解析版) 题型:解答题

(2009•咸宁)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.
(1)证明△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年初中数学第一轮复习教学案例.5.2.三角形的基本概念与基本性质(解析版) 题型:填空题

(2009•咸宁)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90°+∠A;
②以E为圆心,BE为半径的圆与以F为圆心,CF为半径的圆外切;
③设OD=m,AE+AF=n,则S△AEF=mn;
④EF不能成为△ABC的中位线.
其中正确的结论是    .(把你认为正确结论的序号都填上,答案格式如:“①,②,③,④”)

查看答案和解析>>

科目:初中数学 来源:2009年湖北省咸宁市中考数学试卷(解析版) 题型:解答题

(2009•咸宁)如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D为2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、D、E为顶点的四边形是梯形,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省咸宁市中考数学试卷(解析版) 题型:填空题

(2009•咸宁)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90°+∠A;
②以E为圆心,BE为半径的圆与以F为圆心,CF为半径的圆外切;
③设OD=m,AE+AF=n,则S△AEF=mn;
④EF不能成为△ABC的中位线.
其中正确的结论是    .(把你认为正确结论的序号都填上,答案格式如:“①,②,③,④”)

查看答案和解析>>

同步练习册答案