精英家教网 > 初中数学 > 题目详情

已知: ,求的值.

.

解析试题分析:设比值为k,用k表示出x、y、z,然后代入比例式进行计算即可得解.
试题解析:设,则x=2k,y=4k,z=5k,
.
考点:1.比例的性质;2. 待定系数法的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

已知△ADE∽△ABC,AD=2,BD=4,DE=1.5,则BC的长为         .

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有        条.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为    米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图是一张锐角三角形纸片,AD是BC边上的高,BC=40cm,AD=30cm,现从硬纸片上剪下一个长是宽2倍的周长最大的矩形,则所剪得的矩形周长为_____________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.

(1)求证:△CED∽△ACD;
(2)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在△ABC中,AB=AC,BC比AB大3,,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.
(1)求AG的长;
(2)当∠APQ=90º时,直线PG与边BC相交于点M.求的值;
(3)当点Q在边AC上时,设BP=,AQ=,求关于的函数解析式,并写出它的定义域.[

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,梯形中,.一个动点从点出发,以每秒个单位长度的速度沿线段方向运动,过点,交折线段于点,以为边向右作正方形,点在射线上,当点到达点时,运动结束.设点的运动时间为秒().
(1)当正方形的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设正方形与△的重合部分面积为,请直接写出之间的函数关系式和相应的自变量的取值范围;
(3)如图2,当点在线段上运动时,线段与对角线交于点,将△沿翻折,得到△,连接.是否存在这样的,使△是等腰三角形?若存在,求出对应的的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.

(1)你能否再各举出一个 “能相似分割”的三角形和四边形?
(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.

查看答案和解析>>

同步练习册答案