(1)证明:∵四边形ABCD是矩形
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中
∴△DMO≌△BNO(ASA),
∴OM=ON,
∵OB=OD,
∴四边形BMDN是平行四边形,
∵MN⊥BD,
∴平行四边形BMDN是菱形.
(2)解:∵四边形BMDN是菱形,
∴MB=MD,
设MD长为x,则MB=DM=x,
在Rt△AMB中,BM
2=AM
2+AB
2即x
2=(16-x)
2+8
2,
解得:x=10,
答:MD长为10.
分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;
(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM
2=AM
2+AB
2,推出x
2=x
2-32x+256+64,求出即可.
点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.