精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下: (甲)作AB的中垂线,交BC于P点,则P即为所求
(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求
对于两人的作法,下列判断何者正确?(

A.两人皆正确
B.两人皆错误
C.甲正确,乙错误
D.甲错误,乙正确

【答案】C
【解析】解:甲:如图1,∵MN是AB的垂直平分线,
∴AP=BP,
∴∠B=∠BAP,
∵∠APC=∠B+∠BAP,
∴∠APC=2∠ABC,
∴甲正确;
乙:如图2,∵AB=BP,
∴∠BAP=∠APB,
∵∠APC=∠BAP+∠B,
∴∠APC≠2∠ABC,
∴乙错误;
故选C.

根据甲乙两人作图的作法即可证出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,﹣1),B(3,﹣1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.过P作PQ⊥OA于Q.设P点运动的时间为t秒(0<t<2),△OPQ与四边形OABC重叠的面积为S.

(1)求经过O、A、B三点的抛物线的解析式并确定顶点M的坐标;
(2)用含t的代数式表示P、Q两点的坐标;
(3)将△OPQ绕P点逆时针旋转90°,是否存在t,使得△OPQ的顶点O或Q落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由;
(4)求S与t的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ED为⊙O的直径且ED=4,点A(不与E、D重合)为⊙O上一个动点,线段AB经过点E,且EA=EB,F为⊙O上一点,∠FEB=90°,BF的延长线交AD的延长线交于点C.
(1)求证:△EFB≌△ADE;
(2)当点A在⊙O上移动时,直接回答四边形FCDE的最大面积为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差SOAC﹣SBAD为(
A.36
B.12
C.6
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+2的图象与反比例函数y= 的图象交于点P,P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,且SPBD=4, =
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为6的等边△ABC内接于⊙O.
(1)求⊙O半径;
(2)求 的长和弓形BC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在已知的△ABC中,按以下步骤作图: ①分别以B、C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=(

A.50°
B.45°
C.30°
D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.

(1)求y与x的函数关系式,并求出x,y的取值范围;
(2)当PQ∥AC时,求x,y的值;
(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.

查看答案和解析>>

同步练习册答案