精英家教网 > 初中数学 > 题目详情
13.对于x、y定义新运算x*y=ax+by-3(其中a、b是常数),已知1*2=9,-3*3=6,则3*(-4)=-17.

分析 已知等式利用新定义计算求出a与b的值,原式变形后代入计算即可求出值.

解答 解:根据题中的新定义得:$\left\{\begin{array}{l}{a+2b-3=9}\\{-3a+3b-3=6}\end{array}\right.$,即$\left\{\begin{array}{l}{a+2b=12}\\{-a+b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=5}\end{array}\right.$,
则原式=2×3-4×5-3=6-20=-17.
故答案为:-17

点评 此题考查了解二元一次方程组,以及有理数的混合运算,弄清题中的新定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.如图,半径为2的正六边形ABCDEF的中心在坐标原点O,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2017秒时,点P的坐标是(  )
A.(1,$\sqrt{3}$)B.(-1,-$\sqrt{3}$)C.(1,-$\sqrt{3}$)D.(-1,$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知A(-4,2)、B(a,-4)是一次函数y=kx+b的图象与反比例函数y=$\frac{m}{x}$的图象的两个交点;
(1)求一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.甲、乙、丙、丁四位同学一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,
甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”
乙说:“如果把甲的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”
丙说:“∠AGD一定大于∠BFE.”
丁说:“如果联结GF,则GF一定平行于AB.”
他们四人中说法正确的有甲、乙.
(填“甲”、“乙”、“丙”、“丁”).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为(  )
A.35°B.45°C.55°D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,已知抛物线的方程C1:y=-$\frac{1}{m}$(x+2)(x-m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.

(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,∠ACB=58°,若P为△ABC内一点,且∠1=∠2,则∠BPC=122°.

查看答案和解析>>

同步练习册答案