分析 在△ABE中可求得∠B,则可求得∠BAD,由BE=CD可求得BD=CE,可证明△ABD≌△ACE,可求得∠CAE=∠BAD,可求得答案.
解答 解:
∵∠2=120°,∠BAE=80°,
∴∠B=∠2-∠BAE=120°-80°=40°,
∵BE=CD,
∴BD=CE,
在△ABD和△ACE中
$\left\{\begin{array}{l}{AD=AE}\\{∠1=∠2}\\{BD=CE}\end{array}\right.$
∴△ABD≌△ACE(SAS),
∴∠C=∠B=40°,
∴∠CAE=180°-∠2-∠C=180°-120°-40°=20°,
故答案为:20°.
点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com