精英家教网 > 初中数学 > 题目详情

【题目】已知矩形PMON的边OMON分别在xy轴上,O为坐标原点,且点P的坐标为(﹣23).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1再将矩形P1M1O1N1绕着点O1旋转90°得到矩形P2M2O2N2.在坐标系中画出矩形P2M2O2N2,并求出直线P1P2的解析式.

【答案】矩形P2M2O2N2见解析;当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2直线P1P2的解析式为:y=﹣x +;当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,直线P1P2的解析式为:y5x7.

【解析】

由点P的坐标为(﹣23).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1,得到P1的坐标为(23).将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2,得P2的坐标为(72);当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,得P2的坐标为(1,﹣2),然后利用待定系数法分别求出它们的直线解析式.

解:如图:

当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2

∵点P的坐标为(﹣23).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1

P1的坐标为(23),

∵将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2

P2的坐标为(72),

P1P2的解析式为:ykx+b,把P123),P272)代入得,2k+b3①,7k+b2②,

解由①②组成的方程组得,k=﹣ b

所以直线P1P2的解析式为y=﹣x +

当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2.如图,

P2的坐标为(1,﹣2),

P1P2的解析式为:ykx+b,把P123),P21,﹣2)代入得,2k+b3①,k+b=﹣2②,

解由①②组成的方程组得,k5b=﹣7

所以直线P1P2的解析式为y5x7

故答案为:矩形P2M2O2N2见解析;当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2直线P1P2的解析式为:y=﹣x +;当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,直线P1P2的解析式为:y5x7.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠BAD60°,点E在边AD上,连接BE,在BE上取点F,连接AF并延长交BDH,且∠AFE60°,过CCGBD,直线CGAF交于G

(1)求证:∠FAE=∠EBA

(2)求证:AHBE

(3)AE3BH5,求线段FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,以AC为直径作O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.

(1)求证:DE是O的切线;

(2)若CF=2,DF=4,求O直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点M的坐标为(02),以M为圆心,以4为半径的圆与x轴相交于点BC,与y轴正半轴相交于点AAAEBC,点D为弦BC上一点,AEBD,连接ADEC

(1)BC两点的坐标;

(2)求证:ADCE

(3)若点P是弧BAC上一动点(P点与AB点不重合),过点P的⊙M的切线PGx轴于点G,若△BPG为直角三角形,试求出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A

(1)求证:BC为O的切线;

(2)求B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tanEAC=,则BE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形AEFG均为菱形,且∠EAG=∠ABC

1)如图1,点G在线段AD上,已知AD5AG3,且cosABC ,连接AFBF,求BF的长;

2)如图2,点G在菱形ABCD内部,连接BGDE,若点MDE中点,试猜想AMBG之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,的半径为1AB两点坐标分别为已知点P上的一点,点Q是线段AB上的一点,设的面积为S,当为直角三角形时,S的取值范围为______

查看答案和解析>>

同步练习册答案