【题目】已知矩形PMON的边OM、ON分别在x、y轴上,O为坐标原点,且点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1再将矩形P1M1O1N1绕着点O1旋转90°得到矩形P2M2O2N2.在坐标系中画出矩形P2M2O2N2,并求出直线P1P2的解析式.
【答案】矩形P2M2O2N2见解析;当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2,直线P1P2的解析式为:y=﹣x +;当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,直线P1P2的解析式为:y=5x﹣7.
【解析】
由点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1,得到P1的坐标为(2,3).将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2,得P2的坐标为(7,2);当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,得P2的坐标为(1,﹣2),然后利用待定系数法分别求出它们的直线解析式.
解:如图:
当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2.
∵点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1,
∴P1的坐标为(2,3),
∵将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2.
∴P2的坐标为(7,2),
设P1P2的解析式为:y=kx+b,把P1(2,3),P2(7,2)代入得,2k+b=3①,7k+b=2②,
解由①②组成的方程组得,k=﹣ ,b= .
所以直线P1P2的解析式为y=﹣x + ;
当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2.如图,
∴P2的坐标为(1,﹣2),
设P1P2的解析式为:y=kx+b,把P1(2,3),P2(1,﹣2)代入得,2k+b=3①,k+b=﹣2②,
解由①②组成的方程组得,k=5,b=﹣7.
所以直线P1P2的解析式为y=5x﹣7;
故答案为:矩形P2M2O2N2见解析;当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2,直线P1P2的解析式为:y=﹣x +;当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,直线P1P2的解析式为:y=5x﹣7.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠BAD=60°,点E在边AD上,连接BE,在BE上取点F,连接AF并延长交BD于H,且∠AFE=60°,过C作CG∥BD,直线CG、AF交于G.
(1)求证:∠FAE=∠EBA;
(2)求证:AH=BE;
(3)若AE=3,BH=5,求线段FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若CF=2,DF=4,求⊙O直径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点M的坐标为(0,2),以M为圆心,以4为半径的圆与x轴相交于点B、C,与y轴正半轴相交于点A过A作AE∥BC,点D为弦BC上一点,AE=BD,连接AD,EC.
(1)求B、C两点的坐标;
(2)求证:AD=CE;
(3)若点P是弧BAC上一动点(P点与A、B点不重合),过点P的⊙M的切线PG交x轴于点G,若△BPG为直角三角形,试求出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
(1)求此抛物线的解析式.
(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD和四边形AEFG均为菱形,且∠EAG=∠ABC.
(1)如图1,点G在线段AD上,已知AD=5,AG=3,且cos∠ABC= ,连接AF,BF,求BF的长;
(2)如图2,点G在菱形ABCD内部,连接BG、DE,若点M为DE中点,试猜想AM与BG之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,的半径为1,A、B两点坐标分别为、已知点P是上的一点,点Q是线段AB上的一点,设的面积为S,当为直角三角形时,S的取值范围为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com