精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD边长为4,点P在边AD上,且PE⊥AC,PF⊥BD,垂足分别为E、F,则PE+PF的值为______.
∵正方形ABCD边长为4,
∴AD=CD=4,AC⊥BD,
∴∠DAO=45°;
∴AC2=AD2+CD2=42+42=32,则AC=4
2

∵PE⊥AC,PF⊥BD,
∴∠PEC=∠PFB=90°;
又∵AC⊥BD,
∴四边形EPFO是矩形;
∴PF=OE,
又∵∠DAO=∠APE=45°,
∴AE=PE;
∵AE+OE=OA=
1
2
AC=
1
2
×4
2
=2
2

∴PE+PF=2
2

故答案为2
2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF:
(1)CD与BF相等吗?请说明理由.
(2)CD与BF互相垂直吗?请说明理由.
(3)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿45°角画线,将正方形纸片分成5部分,则中间阴影部分的面积是______cm2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=
2
3
6
,则∠ABE的度数______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个矩形色块图的面积为(  )
A.142B.143C.144D.145

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,E、F、G、H分别是各边中点,如果阴影部分的面积是5cm2,那么AB的长度是______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,把一个边长为2的大正方形分成四个同样大小的小正方形,再连接大正方形的四边中点,得到了一个新的正方形(图中阴影部分),求:
(1)图甲中阴影部分的面积是多少?
(2)图甲中阴影部分正方形的边长是多少?
(3)如图乙,在数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,求点A所表示的数是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知∠EOF,点B、C在射线OF上,四边形ABCD是平行四边形,AC、BD相交于点M,连接OM.
(1)当OM⊥AC时,求证:OA=OC.
(2)如图2,当∠EOF=45°时,且四边形ABCD是边长为a的正方形时,求OM的长.(结果保留根号)

查看答案和解析>>

同步练习册答案