精英家教网 > 初中数学 > 题目详情
在△ABC中,AD是边BC上的中线,已知:AB=8,AC=6,则中线AD的取值范围是
1<AD<7
1<AD<7
分析:延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出EB=AC,根据三角形的三边关系定理求出即可.
解答:解:延长AD到E,使AD=DE,连接BE,
∵AD是△ABC的中线,
∴BD=CD,
在△ADC和△EDB中,
BD=CD
∠ADC=∠BDE
AD=DE

∴△ADC≌△EDB,
∴EB=AC,
根据三角形的三边关系定理:8-6<AE<8+6,
∴1<AD<7,
故答案为:1<AD<7.
点评:本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出8-6<2AD<8+6是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是BC边上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的长.(结果保留根号)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•温州二模)如图,在△ABC中,AD是它的角平分线,∠C=90°,E在AB边上,以AE为直径的⊙O交BC于点D,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,AD的弦心距为1,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是∠BAC的平分线,DE、DF分别是△ABD和△ACD的高线,求证:AD⊥EF.

查看答案和解析>>

同步练习册答案