精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.

求证:PD=PE.

 

【答案】

证明详见解析.

【解析】

试题分析:过点D作DF∥AC交BC于点F,由等腰三角形性质和平行线性质可得∠DBF=∠DFB,可推得DB=DF,由因为已知CE=BD,即可得DF=CE,通过AAS可得△DFP≌△ECP,即得到PE=PD.

试题解析:如图,过点D作DF∥AC交BC于点F,

∴∠ACB=∠DFB,∠FDP=∠E.

∵AB=AC(已知),∴∠ACB=∠ABC. ∴∠ABC=∠DFB. ∴DF=DB。

又∵CE=BD(已知),∴CE=DF.

又∵∠DPF=∠CPE,∴△ECP≌△DFP(AAS).∴PE=PD.

考点:1.等腰三角形的判定和性质;2.全等三角形的判定和性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案