精英家教网 > 初中数学 > 题目详情
已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.
证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠BAD=90°,AB=CD,
∴∠BEF+∠BFE=90°.
∵EF⊥ED,
∴∠BEF+∠CED=90°.
∴∠BFE=∠CED.
∴∠BEF=∠EDC.
在△EBF与△DCE中,
∠BFE=∠CED
EF=ED
∠BEF=∠EDC

∴△EBF≌△DCE(ASA).
∴BE=CD.
∴BE=AB.
∴∠BAE=∠BEA=45°.
∴∠EAD=45°.
∴∠BAE=∠EAD.
∴AE平分∠BAD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系XOY中,有A(3,2),B(-1,-4),P是X轴上的一点,Q是Y轴上的一点,若以点A,B,P,Q四个点为顶点的四边形是平行四边形,则Q点的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边△ADE.
(1)△ACD和△CBF全等吗?请说明理由;
(2)判断四边形CDEF的形状,并说明理由;
(3)当点D在线段BC上移动到何处时,∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平行四边形ABCD中,AC交BD于点O,AC=8cm,∠AOB=60°.若AC=BD,试求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长度为32m的金属材料制成如图所示的金属框,下部为一个矩形,上部为一个等边三角形.当下部的矩形面积最大时,求矩形的AB、BC的边长各为多少m?并求此时整个金属框的面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=4,AD=2,E、F分别是AB、CD上的点,且BE=DF,连接BF、DE.
(1)求证:四边形DEBF是平行四边形;
(2)当AE的长为多少时,四边形DEBF是菱形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是(  )
A.测量对角线是否相互平分
B.测量两组对边是否分别相等
C.测量其中三个角是否都为直角
D.测量对角线是否相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接菱形的各边中点所得到的四边形是(  )
A.平行四边形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为______.

查看答案和解析>>

同步练习册答案