精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,则CE=______.
∵CD、CE分别与⊙O相切于点D、E,
∴CD=CE,
∵∠DAC=∠DCA,
∴AD=CD,
∴AD=CE,
∵AD=2,
∴CE=2.
故答案为:2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图所示,∠APB=60°,半径为a的⊙O切PB于P点.若将⊙O在PB上向右滚动,则当滚动到⊙O与PA也相切时,圆心O移动的水平距离是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=4
3
,BE=2.求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

AB是⊙O的直径,D是⊙O上一动点,延长AD到C使CD=AD,连接BC,BD.
(1)证明:当D点与A点不重合时,总有AB=BC;
(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y;
(3)BC与⊙O是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x为何值时相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是
3
2
cm,ED=2cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠C=90°,AC=6,BC=8,CD为直径的⊙O与AB相切于E,则⊙O的半径是(  )
A.2B.2.5C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,AB=AC,D是BC的中点,AE平分∠DAC交DC于E,点O是AC一点,⊙O过A、E两点,交AD于G,交AC于F,连接EF.
(1)求证:CD与⊙O相切.
(2)连接FG交AE于H,若EH=2,HA=
5
2
,求EF长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以O为圆心,5个单位为半径画圆.直线MN经过x轴上一动点P(m,0)且垂直于x轴,当P点在x轴上移动时,直线MN也随着平行移动.按下面条件求m的值或范围.
(1)如果⊙O上任何一点到直线MN的距离都不等于3;
(2)如果⊙O上有且只有一点到直线MN的距离等于3;
(3)如果⊙O上有且只有二点到直线MN的距离等于3;
(4)随着m的变化,⊙O上到直线MN距离等于3的点的个数还有哪些变化?请说明所有各种情形及对应的m值或范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PT切⊙O于点T,经过圆心O的割线PAB交⊙O于点A、B,已知PT=4,PA=2,则⊙O的直径AB等于(  )
A.3B.4C.6D.8

查看答案和解析>>

同步练习册答案