精英家教网 > 初中数学 > 题目详情

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.

(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.

【答案】
(1)

【解答】证明:∵Rt△ABC中,∠BAC=30°,

∴AB=2BC,

又∵△ABE是等边三角形,EF⊥AB,

∴AB=2AF

∴AF=BC,

在Rt△AFE和Rt△BCA中

∴△AFE≌△BCA(HL),

∴AC=EF;


(2)

【解答】∵△ACD是等边三角形,

∴∠DAC=60°,AC=AD,

∴∠DAB=∠DAC+∠BAC=90°

又∵EF⊥AB,

∴EF∥AD,

∵AC=EF,AC=AD,

∴EF=AD,

∴四边形ADFE是平行四边形.


【解析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知函数y=x0)的图象经过点AB,点B的坐标为(22).过点AACx轴,垂足为C,过点BBDy轴,垂足为DACBD交于点F.一次函数y=ax+b的图象经过点AD,与x轴的负半轴交于点E

1)若AC=OD,求ab的值;

2)若BC∥AE,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.

(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将摸出黑球记为事件A,请完成下列表格;

(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,直线OM是正比例函数的图象,点A的坐标为(10),在直线OM上找一点N,使ONA是等腰三角形,则符合条件的点N有( )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,

求证:四边形ABCD是四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a2+ab=5,ab+b2=4,则a2+2ab+b2的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值

已知|x2|+y+120,求2x2[5xy3x2y2]5(﹣xy+y2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“明天的降水概率为90%”的含义解释正确的是(  )

A.明天90%的地区会下雨B.90%的人认为明天会下雨

C.明天90%的时间会下雨D.100次类似于明天的天气条件下,大约有90次会下雨

查看答案和解析>>

同步练习册答案