精英家教网 > 初中数学 > 题目详情
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

【答案】分析:(1)证明△ACE≌△BCD推出∠ACB=∠EAC即可证.
(2)证明△ABC∽△EDC后可推出∠EAC=∠ACB,由此可证.
解答:证明:(1)∵△ABC和△EDC是等边三角形
∴∠ACB=∠ECD=60°,AC=CB,EC=DC,
∴∠ACD+∠BCD=∠ACE+∠ACD,
∴∠BCD=∠ACE,
∴△ACE≌△BCD,
∴∠EAC=∠B=60°,
又∵∠ACB=60°,
∴∠ACB=∠EAC,
∴AE∥BC;

(2)仍平行;
∵△ABC∽△EDC,
∴∠ACB=∠ECD,
∴∠ACD+∠BCD=∠ACE+∠ACD,
∴∠BCD=∠ACE,
∴△AEC∽△BDC,
∴∠EAC=∠B,
又∵∠ACB=∠B,
∴∠EAC=∠ACB,
∴AE∥BC.
点评:本题考查的是全等三角形的判定以及相似三角形的判定的有关知识.关键是证明△ACE≌△BCD和△ABC∽△EDC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,把正方形ACFG和Rt△ACB按如图甲所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正方形的顶点F,得△A′B′C,AB分别与A′C,A′B′相交于D,E,如图乙所示,那么△ACB与△A′B′C的重叠部分(即阴影部分)的面积为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,在矩形ABCD中,动点P从点B出发,沿矩形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,把y看作x的函数,函数图象如图2所示,则△ABC的面积为(  )
精英家教网
A、10B、16C、18D、32

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丰台区一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为
8
5
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,点A为双曲线y=
kx
(x>0)
上一点,过点A作AD⊥y轴于D点,连接AO.
(1)若△ADO的面积为3,求反比例函数的解析式;
(2)如图2所示,在(1)的条件下,以A为直角顶点作等腰Rt△ABC,其中点B在x轴的负半轴,点C在x轴的正半轴,求OC2-OB2的值;
(3)如图3所示,在(1)的条件下,若B点的坐标为B(-1,0),双曲线上是否存在一点P,连接AO、PO,使得∠AOP=45°?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,在△ABC中,AE是∠BAC的平分线,∠B<∠C,F为AD上一点,且FD⊥BC于D.
(1)试推导∠EFD与∠B、∠C的大小关系.
(2)如图2所示,当点F在AE的延长线上时,其余条件不变,在(1)中推导的结论还成立吗?请说明理由.

查看答案和解析>>

同步练习册答案