科目:初中数学 来源: 题型:
在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠AOB=α,将△DOC
按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD为矩形时,如图1.求证:△AOC′≌△BOD′.
(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2.
①猜想此时△AOC′与△BOD′有何关系,证明你的猜想;
②探究AC′与BD′的数量关系以及∠AMB与α的大小关系,并给予证明.
| |||||||
| |||||||
| |||||||
查看答案和解析>>
科目:初中数学 来源: 题型:
已知关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)当取最小的整数时,求抛物线 的顶点坐标以及它与轴的交点坐标;
(3)将(2)中求得的抛物线在轴下方的部分沿轴翻折到轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线有三个不同公共点时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,以点为顶点任作一直角,使其两边分别与轴、轴
的正半轴交于点、,连接,过点作于点,设点的横坐标为,的长为,
则下列图象中,能表示与的函数关系的图象大致是( )
查看答案和解析>>
科目:初中数学 来源: 题型:
问题:在中,,∠A=100°,BD为∠B 的平分线,探究AD、BD、BC之间的数量关系.
请你完成下列探究过程:
(1)观察图形,猜想AD、BD、BC之间的数量关系为 .
(2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC= 度.
(3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com