精英家教网 > 初中数学 > 题目详情
如图,已知直线y=x与抛物线交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.
(1)A(0,0),B(2,2)。
(2)0<x<2。
(3)符号条件的点P有4个,
其中P1),P2),P3(﹣2,2)。

试题分析:(1)根据题意可以列出关于x、y的方程组,通过解方程组可以求得点A、B的坐标。
(2)根据函数图象可以直接回答问题;
(3)需要分类讨论:以AB为腰和以AB为底的等腰三角形。
解:(1)如图,∵直线y=x与抛物线交于A、B两点,
,解得,
∴A(0,0),B(2,2)。
(2)由(1)知,A(0,0),B(2,2).
∵一次函数y=x的函数值为y1,二次函数的函数值为y2
∴当y1>y2时,根据图象可知x的取值范围是:0<x<2。
(3)该抛物线上存在4个点,使得每个点与AB构成的三角形为等腰三角形。理由如下:
∵A(0,0),B(2,2),∴B=
根据题意,可设P(x,),
①当PA=PB时,点P是线段AB的中垂线与抛物线的交点,

易求线段AB的中垂线的解析式为y=﹣x+2,

解得,
∴P1),P2)。
②当PA=AB时,根据抛物线的对称性知,点P与点B关于y轴对称,即P3(﹣2,2)。
③当AB=PB时,点P4的位置如图所示。
综上所述,符号条件的点P有4个,
其中P1),P2),P3(﹣2,2)。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.

(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.
(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为   ,其中自变量x的取值范围是   
(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?
(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(-2,-5)、(1,4).
(1)求这个二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y > 0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点B1是抛物线的顶点,点A1、A2都在该抛物线上,四边形OA1B1C1、OA2B2C2均为正方形,点B2在y轴上,直线C2B2与该抛物线交于点,则的值是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=﹣n始终保持相切,则n=   (用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是
A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.

查看答案和解析>>

同步练习册答案