精英家教网 > 初中数学 > 题目详情

已知抛物线数学公式交x轴于A(x1,0)、B(x2,0),交y轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.

解:(1)抛物线y=x2-mx-2m交x轴于A(a,0)和B(b,0),
所以a+b=3m,a•b=-4m,
∵抛物线开口向上,与X轴有两个交点,
∴C点在Y轴下半轴上,所以点C(0,-2m),-2m<0,所以m>0,
AO+OB=|a-b|,OC=|-2m|=2m,
所以(AO+OB)2=(a-b)2=(a+b)-4ab=9m2+16m,
12OC+1=24m+1,
∴9m2+16m=24m+1,
9m2-8m-1=0,
m=1或m=-<0,舍去,
∴m=1,
即抛物线的解析式为:y=x2-x-2;

(2)易知:A点坐标为(-1,0),B点坐标为(4,0),C点坐标为(0,-2),
连接AC,BC,AC=,BC=2,AB=5,
∴AC2+BC2=AB2
∴∠ACB=90°,
设C关于抛物线对称轴的对称点为C′,
那么C′坐标为(3,-2),
根据抛物线的对称性可知:如果连接AC′、BC′,那么∠AC′B=90°,
因此如果以AB为直径作圆,那么此圆必过C,C′,
根据圆周角定理可知:x轴下方的半圆上任意一点和A、B组成的三角形都是直角三角形,
如果设P点横坐标为x,那么必有当0<x<3时,∠APB为锐角,
当-1<x<0或3<x<4时,∠APB为钝角.
分析:(1)可根据(AO+OB)2=12CO+1以及一元二次方程根与系数的关系来求出m的值,进而可确定出抛物线的解析式;
(2)本题的关键是找出∠APB为直角时,P点的位置,根据(1)的抛物线不难得出A,B,C三点的坐标为(-1,0)(4,0)
(0,-2).如果∠APB为直角,那么点P必为以AB为直径的圆与抛物线的交点.据此可判断出∠APB时,P点横坐标的范围.
点评:本题考查了一元二次方程根与系数的关系,二次函数解析式的确定等知识点.要注意的是(2)中结合圆周角的相关知识来理解问题可使问题简化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知抛物线交x轴于A、B两点,交y轴于点C(0,2),此抛物线的对称轴为直线x=2,点A的坐标为(1,0).
(1)求B点坐标以及△ABC的面积;
(2)求抛物线的解析式;
(3)过点C作x轴的平行线交此抛物线的对称轴于点D,你能判断四边形ABDC是什么四边形吗?并证明你的结论;
(4)若一个动点P自OC的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点C,求使点P运动的总路径(ME+EF+FC)最短的点E、F的坐标,并求出这个最短总路径的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线交x轴于点A、点B,交y轴于点C,且点A(6,0),点C(0,4),AB=5OB,设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.
(1)求抛物线解析式及顶点坐标;
(2)求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
(4)是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•锦州二模)如图,已知抛物线交x轴于A、B两点(点A在点B的左侧),交y轴于点C,已知点B(8,0),tan∠OCB=2,△ABC的面积为8.
(1)求抛物线的表达式;
(2)若平行于x轴的动直线EF从点C 出发,以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于E、F两点,动点P同时从点B出发在线段BO上以每秒2个单位的速度运动,连接PF、AF,设运动时间为t秒.△AFP的面积为S,求S与t的函数表达式;
(3)在(2)的条件下,是否存在t值,使得以P、B、F为顶点的三角形与△ABC相似?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省杭州市上城区中考二模数学试卷(带解析) 题型:解答题

已知抛物线交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l. 在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.
(1)写出A,B,C三点的坐标;
(2)若点P位于抛物线的对称轴的右侧:
①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;
②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省杭州市上城区中考二模数学试卷(解析版) 题型:解答题

已知抛物线交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l. 在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.

(1)写出A,B,C三点的坐标;

(2)若点P位于抛物线的对称轴的右侧:

①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;

②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上.若存在,求出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案