精英家教网 > 初中数学 > 题目详情
(2013•门头沟区一模)如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,若∠ADC=26°,则∠AOB的度数为(  )
分析:由OA是⊙O的半径,弦BC⊥OA,根据垂径定理的即可求得
AB
=
AC
,然后由圆周角定理,求得∠AOB的度数.
解答:解:∵OA是⊙O的半径,弦BC⊥OA,
AB
=
AC

∵∠ADC=26°,
∴∠AOB=2∠ADC=52°.
故选C.
点评:此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•门头沟区二模)PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)已知圆锥侧面展开图的扇形半径为2cm,面积是
4
3
πcm2
,则扇形的弧长和圆心角的度数分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,在平行四边形ABCD中,AC=12,BD=8,P是AC上的一个动点,过点P作EF∥BD,与平行四边形的两条边分别交于点E、F.设CP=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为60°,则建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求直线AC的解析式;
(2)当t为何值时,△CQE的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?

查看答案和解析>>

同步练习册答案