精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xoy中,已知点P(-2,1)关于y轴的对称点P′,点T(t,0)是x轴上的一个动点,当△P′TO是等腰三角形时,t的值是
 
分析:点P′是已知点P(-2,1)关于y轴的对称,则点P′的坐标是(2,1),则OP′=
5
,OP′是等腰三角形的底边或腰,应分几种情况讨论.
解答:解:由题可知,点P′的坐标是(2,1),则OP′=
22+12
=
5

(1)当OP′是等腰三角形的底边时,点T就是OP′的垂直平分线与x轴的交点,根据三角形相似可得:OT=
5
4

(2)当OP′是等腰三角形的腰时,若点O是顶角顶点,则点T就是以点O为圆心,以OP′为半径的圆与x轴的交点,则坐标是(4,0),则t的值是4,若点P′是顶角顶点,则点T就是以点P′为圆心,以OP′为半径的圆与x轴的交点,则坐标是(
5
,0)或(-
5
,0),则t的值是
5
或-
5

由(1)(2)可知t的值是
5
4
或4或
5
-
5
点评:解决本题的关键是正确认识到需要讨论,讨论等腰三角形的边应如何分类.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案