【题目】如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.
探究:当点E在边AB上,求证:EF=AE+CF.
应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是______.
(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是______.
【答案】4EF=CF-AE或EF=AE-CF
【解析】
探究:作辅助线,构建全等三角形,证明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再证明△GDE≌△FDE(SAS),根据EG的长可得结论;
应用:
(1)利用探究的结论计算三角形周长为4;
(2)分两种情况:①点E在BA的延长线上时,如图2,EF=CF-AE,②当点E在AB的延长线上时,如图3,
EF=AE-CF,两种情况都是作辅助线,构建全等三角形,证明两三角形全等得线段相等,根据线段的和与差得出结论.
探究:证明:如图,延长BA到G,使AG=CF,连接DG,
∵四边形ABCD是正方形,
∴DA=DC,∠DAG=∠DCF=90°,
∴△DAG≌△DCF(SAS),
∴∠1=∠3,DG=DF,
∵∠ADC=90°,∠EDF=45°,
∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,
∵DE=DE,
∴△GDE≌△FDE(SAS),
∴EF=EG=AE+AG=AE+CF;
应用:
(1)△BEF的周长=BE+BF+EF ,
由探究得:EF=AE+CF,
∴△BEF的周长=BE+BF+AE+CF=AB+BC=2+2=4,
故答案为:4;
(2)当点E不在边AB上时,分两种情况:
①点E在BA的延长线上时,如图2,
EF=CF-AE,理由是:
在CB上取CG=AE,连接DG,
∵∠DAE=∠DCG=90°,AD=DC,
∴△DAE≌△DCG(SAS)
∴DE=DG,∠EDA=∠GDC
∵∠ADC=90°,
∴∠EDG=90°
∴∠EDF+∠FDG=90°,
∵∠EDF=45°,
∴∠FDG=90°-45°=45°,
∴∠EDF=∠FDG=45°,
在△EDF和△GDF中,
∵DE=DG,∠EDF=∠GDF,DF=DF
∴△EDF≌△GDF(SAS),
∴EF=FG,
∴EF=CF-CG=CF-AE;
②当点E在AB的延长线上时,如图3,
EF=AE-CF,理由是:
延长BC到G,使CG=AE, 连接DG,
∵DA=DC,∠DAE=∠DCG=90°, CG=AE
∴△DAE≌△DCG
∴DE=DG, ∠ADE=∠CDG.
∴∠ADE+∠EDC=∠CDG+∠EDC=90.
即:∠ADC=∠EDG=90,
∵∠EDF=45°,
∴∠GDF=90°-45°=45°,
∴∠EDF=∠GDF,
∵DF=DF,∠EDF=∠GDF,DE=DG
∴△EDF≌△GDF,
∴EF=GF,
∴EF=CG-CF=AE-CF;
综上所述,当点E不在边AB上时,EF,AE,CF三者的数量关系是:EF=CF-AE或EF=AE-CF;
科目:初中数学 来源: 题型:
【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的方法解方程:
(1)25 y 2- 16 = 0; (2)y 2+ 2 y-99=0;
(3)3x 2 + 2x -3=0; (4)(2x + 1)2 =3(2x + 1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′、B′、C′的坐标.
(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果点Q′坐标是(m,n),那么点Q的坐标是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中、分别表示甲、乙两人到B地的距离y(km)与甲出发时间x(h)的函数关系图象.
(1)根据图象,求乙的行驶速度.
(2)解释交点A的实际意义.
(3)求甲出发多少时间,两人之间恰好相距5km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,
(1)求证: △BCE≌△CAD;
(2)猜想:AD,DE,BE的数量关系为 (不需证明);
(3)当CE绕点C旋转到图2位置时,猜想线段AD,DE,BE之间又有怎样的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com